pESCA_CV_fullInfo: pESCA model selection based on CV error when full information...

Description Usage Arguments Value Examples

Description

This function implements a missing value based CV model selection approach for the pESCA model on mutliple data sets with the same data type. The details can be found in https://arxiv.org/abs/1902.06241.

Usage

1
2
pESCA_CV_fullInfo(simulatedData, lambdas_CV = NULL, penalty = "L2",
  fun_concave = "gdp", opts = list())

Arguments

simulatedData

the output of function dataSimu_group_sparse

lambdas_CV

a vector cotains a sequence of values of lambda

penalty

The name of the penalty you want to used.

  • "L2": group-wise concave L2 norm penalty;

  • "L1": group-wise concave L1 norm penalty;

  • "element": element-wise concave penalty;

  • "composite": the composition of group- and element-wise penalty.

fun_concave

a string indicates the used concave function. Three options are included in the algorithm.

  • "gdp": GDP penalty;

  • "lq": Lq penalty;

  • "scad": SCAD penalty.

opts

a list contains the options of the algorithms.

  • tol_obj: tolerance for relative change of joint loss function, default:1E-6;

  • maxit: max number of iterations, default: 1000;

  • gamma: hyper-parameter of the concave penalty, default: 1;

  • R: the initial number of PCs, default: 0.5 0.5*min(I,J);

  • rand_start: initilization method, random (1), SCA(0), default: 0;

  • alphas: dispersion parameters of exponential dispersion families, default: 1.

  • thr_path: the option to generate thresholding path, default: 0;

  • quiet: quiet==1, not show the progress when running the algorithm, default: 0.

Value

This function returns a list contains the results of a pESCA mdoel.

Examples

1
2
3
4
5
## Not run: 
result_CV_fullInfo <- pESCA_CV_fullInfo(simulatedData,
                            lambdas_CV, penalty='L2', fun_concave='gdp', opts=opts)

## End(Not run)

YipengUva/RpESCA documentation built on July 2, 2019, 6:41 p.m.