Description Usage Arguments Value Examples
This is an intermediate step of the algorithm for fitting pESCA model. The details of this function can be found in ref thesis.
1 2 | update_B_L2(JHk, A, B0, Sigmas0, d, fun_concave, alphas, rhos, lambdas,
gamma)
|
JHk |
An output of the majorizaiotn step |
A |
The score matrix A during k-th iteration |
B0 |
The loading matrix B during the previous iteration |
Sigmas0 |
The group length during the previous iteration |
d |
A numeric vector contains the numbers of variables in different data sets |
fun_concave |
A string indicates the used concave function |
alphas |
The dispersion parameters of exponential dispersion families |
rhos |
An output of the majorizaiotn step |
lambdas |
A numeric vector indicates the values of tuning parameters for each data set. |
gamma |
The hyper-parameter of the concave penalty |
This function returns the updated loading matrix B.
1 2 3 4 5 | ## Not run:
B <- update_B_L2(JHk,A,B0,Sigmas0,d,
fun_concave,alphas,rhos,lambdas,gamma)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.