svd_CV: Model selection of a svd model using missing value based CV...

Description Usage Arguments Value Examples

Description

This function implemented a missing value based CV model selection approach. First, ratio_mis percent elements are randomly selected as missing values. After that a EM-SVD model is constructed to estimate the prediction error. The details of this function can be found in https://arxiv.org/abs/1902.06241.

Usage

1
svd_CV(X, K = 3, Rs = 1:15, opts = list(), ratio_mis = 0.1)

Arguments

X

a quantitative data set

K

K-fold cross validation

Rs

the searching range of the number of components

opts

a list contains the setting for the algorithm.

  • tol_obj: tolerance for relative change of hist_obj, default:1E-6;

  • maxit: max number of iterations, default: 1000;

ratio_mis

the propotion of missing values

Value

This function returns a list contains

Examples

1
## Not run: svd_CV(X,K=3,Rs = 1:15,opts=list(),ratio_mis=0.1)

YipengUva/RpESCA documentation built on July 2, 2019, 6:41 p.m.