betaparametVP: Estimation of Binomal Parameters V And P in Count Data of RNA...

View source: R/betaparametVP.R

betaparametVPR Documentation

Estimation of Binomal Parameters V And P in Count Data of RNA Reads

Description

This function is used to estimate parameters P and V by optimalizing estimation of parameters: alpha and beta.

Usage

betaparametVP(X, NX)

Arguments

X

count dataset derived from m replicate libraries in one condition.

NX

vector of m library sizes. Library size is sum of counts over the whole library.

Details

Count data of RNA reads are assumed to follow binomial distribution with parameters (P) and (V), while P is assumed to follow beta distribution with parameters alpha (a) and beta(b). Parameters P and V are estimated by optimal estimation of parameters a and b. The optimal method is an iteration method drived by weighting proportion of gene or isoform in each replicate library. This is a large-scale method for estimating these parameters. Estimation of parameters P and V is core of the multiple beta t-test method because P and V will be used to calculate t-value.

Value

return a list:

P

N proportions estimated.

V

N variances estimated.

Note

betaparametVP requres functions betaparametab and betaparametw.

Author(s)

Yuan-DE Tan tanyuande@gmail.com

References

Baggerly KA, Deng L, Morris JS, Aldaz CM (2003) Differential expression in SAGE: accounting for normal between-library variation. Bioinformatics, 19: 1477-1483.
Yuan-De Tan, Anita M. Chandler, Arindam Chaudhury, and Joel R. Neilson(2015) A Powerful Statistical Approach for Large-scale Differential Transcription Analysis.Plos One,10.1371/journal.pone.0123658.

See Also

betaparametab, betaparametw

Examples

data(jkttcell) 
X<-jkttcell[1:500,]
na<-3
nb<-3
cn<-length(X[1,])
rn<-length(X[,1])
XC<-X[,1:(cn-na-nb)]
XX<-X[,(cn-na-nb+1):cn]
n<-na+nb
XA<-XX[,1:na]
SA<-apply(XA,2,sum)
PA<-betaparametVP(XA,SA)

Yuande/MBttest documentation built on Aug. 25, 2022, 12:58 a.m.