context("Dataframe Structure")
test_that("curve_mean", {
# Produce random sample data
GroupA <- runif(100, min = 0, max = 100)
GroupB <- runif(100, min = 0, max = 100)
RandomData <- data.frame(GroupA, GroupB)
bob <- curve_mean(GroupA, GroupB, RandomData, method = "default")
# Set sample dataframe.
variable1 <- rnorm(100)
variable2 <- rnorm(100)
variable3 <- rnorm(100)
variable4 <- rnorm(100)
variable5 <- rnorm(100)
variable6 <- rnorm(100)
variable7 <- rnorm(100)
sampledf <- data.frame(variable1, variable2, variable3, variable4, variable5, variable6, variable7)
columnnames <- c("lower.limit", "upper.limit", "intrvl.width", "intrvl.level", "cdf", "pvalue", "svalue")
colnames(sampledf) <- columnnames
expect_equivalent(str(bob[[1]]), str(sampledf))
})
test_that("curve_gen", {
# Produce random sample data
GroupA <- rnorm(50)
GroupB <- rnorm(50)
RandomData <- data.frame(GroupA, GroupB)
rob <- glm(GroupA ~ GroupB, data = RandomData)
bob <- curve_gen(rob, "GroupB", method = "glm")
# Set sample dataframe.
variable1 <- rnorm(100)
variable2 <- rnorm(100)
variable3 <- rnorm(100)
variable4 <- rnorm(100)
variable5 <- rnorm(100)
variable6 <- rnorm(100)
variable7 <- rnorm(100)
sampledf <- data.frame(variable1, variable2, variable3, variable4, variable5, variable6, variable7)
columnnames <- c("lower.limit", "upper.limit", "intrvl.width", "intrvl.level", "cdf", "pvalue", "svalue")
colnames(sampledf) <- columnnames
expect_equivalent(str(bob[[1]]), str(sampledf))
})
test_that("curve_meta", {
library(metafor)
# Produce random sample data
GroupAData <- runif(20, min = 0, max = 100)
GroupAMean <- round(mean(GroupAData), digits = 2)
GroupASD <- round(sd(GroupAData), digits = 2)
GroupBData <- runif(20, min = 0, max = 100)
GroupBMean <- round(mean(GroupBData), digits = 2)
GroupBSD <- round(sd(GroupBData), digits = 2)
GroupCData <- runif(20, min = 0, max = 100)
GroupCMean <- round(mean(GroupCData), digits = 2)
GroupCSD <- round(sd(GroupCData), digits = 2)
GroupDData <- runif(20, min = 0, max = 100)
GroupDMean <- round(mean(GroupDData), digits = 2)
GroupDSD <- round(sd(GroupDData), digits = 2)
# Combine the data
StudyName <- c("Study1", "Study2")
MeanTreatment <- c(GroupAMean, GroupCMean)
MeanControl <- c(GroupBMean, GroupDMean)
SDTreatment <- c(GroupASD, GroupCSD)
SDControl <- c(GroupBSD, GroupDSD)
NTreatment <- c(20, 20)
NControl <- c(20, 20)
metadf <- data.frame(StudyName, MeanTreatment, MeanControl, SDTreatment, SDControl, NTreatment, NControl)
# Use metafor to calculate the standardized mean difference
library(metafor)
dat <- escalc(
measure = "SMD", m1i = MeanTreatment, sd1i = SDTreatment, n1i = NTreatment,
m2i = MeanControl, sd2i = SDControl, n2i = NControl, data = metadf
)
# Pool the data using a particular method. Here "FE" is the fixed-effects model
res <- rma(yi, vi, data = dat, slab = paste(StudyName, sep = ", "), method = "FE", digits = 2)
# Calculate the intervals using the metainterval function
metaf <- curve_meta(res)
# Set sample dataframe.
variable1 <- rnorm(100)
variable2 <- rnorm(100)
variable3 <- rnorm(100)
variable4 <- rnorm(100)
variable5 <- rnorm(100)
variable6 <- rnorm(100)
variable7 <- rnorm(100)
sampledf <- data.frame(variable1, variable2, variable3, variable4, variable5, variable6, variable7)
columnnames <- c("lower.limit", "upper.limit", "intrvl.width", "intrvl.level", "cdf", "pvalue", "svalue")
colnames(sampledf) <- columnnames
expect_equivalent(str(metaf[[1]]), str(sampledf))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.