# __ ___ __
# /\ \__ /'___\ /\ \__ __
# _____ __ _ __ __ ___ ___ __\ \ ,_\ __ _ __ /\ \__/ __ __ ___ ___\ \ ,_\/\_\ ___ ___ ____
#/\ '__`\ /'__`\ /\`'__\/'__`\ /' __` __`\ /'__`\ \ \/ /'__`\/\`'__\ \ \ ,__\/\ \/\ \ /' _ `\ /'___\ \ \/\/\ \ / __`\ /' _ `\ /',__\
#\ \ \L\ \/\ \L\.\_\ \ \//\ \L\.\_/\ \/\ \/\ \/\ __/\ \ \_/\ __/\ \ \/ \ \ \_/\ \ \_\ \/\ \/\ \/\ \__/\ \ \_\ \ \/\ \L\ \/\ \/\ \/\__, `\
# \ \ ,__/\ \__/.\_\\ \_\\ \__/.\_\ \_\ \_\ \_\ \____\\ \__\ \____\\ \_\ \ \_\ \ \____/\ \_\ \_\ \____\\ \__\\ \_\ \____/\ \_\ \_\/\____/
# \ \ \/ \/__/\/_/ \/_/ \/__/\/_/\/_/\/_/\/_/\/____/ \/__/\/____/ \/_/ \/_/ \/___/ \/_/\/_/\/____/ \/__/ \/_/\/___/ \/_/\/_/\/___/
# \ \_\
# \/_/
#
#annual juvenile mortality rates of 0.57 for females and 0.47 for males,
#given that females reach adult size at 14.8 months of age and males at 16.3 months of age
#Vardon, Michael J., and Christopher R. Tidemann. "The black flying-fox (Pteropus alecto) in north Australia:
#juvenile mortality and longevity." Australian Journal of Zoology 48.1 (2000): 91-97.
#'parameter function
#'@param x any parameter
#'@return paramerter values
paramsFunc <-
function(#parameters
gamma_1_Val = 0,
# clearance rate I->S
gamma_2_Val = 0,
# clearance rate I->R
zeta_s = rnorm(1,0.2,0.1),
# clearance rate E->S
sigma_2_Val = 0,
# clearance rate E->R
mu_Val = 1.37,# 2.27 for straw col bats,
# juvenile maturation rate
mj_Val = rnorm(1,0.5,0.1), #0.796 for straw coloureds, split to male and female?
# juvenile death rate
m_Val = rnorm(1,0.186,0.05) ,#cant get a good value in the lit so putting loose prior on it
# adult death rate
omega_m_Val = rnorm(1,0.8,0.1),
# maternal antibody waning rate
omega_2_Val = 0,
# immune waning rate
epsilon_Val = 0 ,
# incubation/recurrance rate E->I
kappa_Val = rnorm(1,mean=3.60206,sd=0.1) ,
# carrying capacity
c_Val = 2.113776 , # p.alecto 0.4? 1.53 for ghana,
#birth pulse scalar
s_Val = rnorm(1,130,10) , #14.3 for straw col,
#birth pulse synchronicity
phi_Val = rnorm(1,7.18,0.1), #7.18 for p.alecto mid october
#birth pulse timing
rho_Val = 0,
#latency I->E
R0_Val = runif(1,1,25),
Phi2_val= 1,
#proportion of population sampled
oDist_s = 2 ,
#overdispersion parameter
zeta_p = runif(1,0.1,1),
pcrProb2= runif(1,0.1,1),
sigmaVer=ifelse(zeta_s>0,1,2),
gammaVer=ifelse(gamma_1_Val>0,1,2),
betaVer=2,
S2_val =runif(1,1,25) ,
d_val = runif(1,1,10),
oDist1=2,
oDist_u=runif(1,0,3),
c_val2=1,
envOscType=0,
betaFX=0,
betaFXVal=0
)
list(
gamma_1_Val = gamma_1_Val,
gamma_2_Val = gamma_2_Val,
zeta_s = zeta_s,
sigma_2_Val = sigma_2_Val,
mu_Val = mu_Val,
mj_Val = mj_Val,
m_Val = m_Val,
omega_m_Val = omega_m_Val,
omega_2_Val = omega_2_Val,
epsilon_Val = epsilon_Val,
kappa_Val = kappa_Val,
c_Val = c_Val,
s_Val = s_Val,
phi_Val = phi_Val,
rho_Val = rho_Val,
R0_Val= R0_Val,
Phi2_val = Phi2_val,
oDist_s = oDist_s,
zeta_p =zeta_p,
sigmaVer=sigmaVer,
gammaVer=gammaVer,
betaVer=betaVer,
S2_val=S2_val,
d_val=d_val,
pcrProb2=pcrProb2,
oDist1=oDist1,
oDist_u=oDist_u,
c_val2=c_val2,
envOscType= envOscType,
betaFX=betaFX,
betaFXVal=betaFXVal
)
#bbJ<-subset(batsBoonah,Age=="J")
#bbJ$day<-yday(bbJ$Date)
#bbJ<-aggregate(bbJ$Age~bbJ$day,FUN=length)
#plot(bbJ)
#res<-NULL
#for (i in 1:365){
# b <-c * exp(-70*(cos(3.14*i - 4.5))^2)
# res<-rbind(res,b)
#}
#lines(res,type="l")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.