#' Tools for hydrogeology and poroelasticity.
#'
#' This package provides tools to calculate quantities
#' commonly found in hydrogeology and poroelasticity studies including,
#' to name a few, hydraultic conductivity, permeability, transmissivity, etc.
#'
#' @section Scientific background:
#'
#' TODO
#'
#' \subsection{Physical parameters}{
#' TODO
#' }
#'
#' @docType package
#' @name hydrogeo.p-package
#' @aliases hydrogeo.p
#' @author Andrew J. Barbour <andy.barbour@@gmail.com>
#'
#' @importFrom utils data str
#' @importFrom grDevices dev.cur grey
#' @importFrom graphics lines par plot polygon rect segments text
#' @importFrom reshape2 dcast
#'
#' @references Brocher, T. M. (2005).
#' Empirical relations between elastic wavespeeds and density in the Earth's crust.
#' \emph{Bulletin of the Seismological Society of America}, \strong{95} (6), 2081-2092.
#'
#' @references Davies, S. N., and R. J. M. DeWiest (1966),
#' \strong{Hydrogeology}, \emph{J Wiley and Sons}, \emph{New York}, 61.
#'
#' @references Lachenbruch, A. H. (1980),
#' Frictional heating, fluid pressure, and the resistance to fault motion,
#' \emph{J. Geophys. Res.}, \strong{85} (B11), 6097-6112,
#' doi: 10.1029/JB085iB11p06097
#'
#' @references Rice, J. R., and M. P. Cleary (1976),
#' Some basic stress diffusion solutions for fluid-saturated elastic porous
#' media with compressible constituents,
#' \emph{Rev. Geophys.}, \strong{14} (2), 227-241,
#' doi:10.1029/RG014i002p00227
#'
#' @references Roeloffs, E. (1996),
#' Poroelastic Techniques in the Study of Earthquake-Related Hydrologic Phenomena,
#' \emph{Advances in Geophysics}, \strong{37}, 135-195,
#' doi: 10.1016/S0065-2687(08)60270-8
#'
#' @references Rojstaczer, S., and D.C. Agnew (1989),
#' The Influence of Formation Material Properties on the Response of
#' Water Levels in Wells to Earth Tides and Atmospheric Loading,
#' \emph{J. Geophys. Res.}, \strong{94} (B9), 12403-12411.
#'
#' @references Shapiro, S. A., Huenges, E. and Borm, G. (1997),
#' Estimating the crust permeability from fluid-injection-induced
#' seismic emission at the KTB site,
#' \emph{Geophysical Journal International}, \strong{131} (2),
#' doi: 10.1111/j.1365-246X.1997.tb01215.x
#'
#' @references Shepard, F. P. (1954),
#' Nomenclature based on sand-silt-clay ratios,
#' \emph{Journal of Sedimentary Research}, \strong{24} (3), 151-158.
#'
#' @seealso
#' \code{\link{compressibility}},
#' \code{\link{dimensional_units}},
#' \code{\link{hydrogeo.p-constants}},
#' \code{\link{hydrogeo.p-units}},
#' \code{\link{hydraulic_diffusivity}},
#' \code{\link{hydraulic_conductivity}},
#' \code{\link{permeability}},
#' \code{\link{porosity}},
#' \code{\link{skempton}},
#' \code{\link{storativity}},
#' \code{\link{transmissivity}}
#'
NULL
#
# Datasets
#
#' Constants used as defaults
#'
#' The hydrogeologic response of an aquifer system depends on its mechanical
#' and hydraulic properties; if these are not known or
#' specified, these constants are used.
#'
#' @details The helper function \code{\link{constants._hg_}}
#' shows (the structure of, optionally)
#' and returns \code{.hg_constants}.
#' \code{\link{get_constants}} simply accesses \code{\link{constants._hg_}}
#'
#' The following constants are set here:
#' gravity, properties of water, Poisson's ratios for a typical
#' drained and undrained material, the compressibities
#' of fluid and undrained fluid-saturated rock,
#' atmospheric properties at ATP, and some conversion
#' factors.
#'
#' @note This functionality may be replaced in the future with
#' the \code{\link[settings]{options_manager}} function on CRAN
#' (in the new \pkg{settings} package).
#'
#' @name hydrogeo.p-constants
#' @export
#' @seealso \code{\link{hydrogeo.p-units}}, \code{\link{hydrogeo.p}}
.hg_constants <- list(gravity=list(
std=9.80665 # 6371 km
),
water=list(
dens=1000, # kg/m^3
dyn_visc=1.002e-3 # Pa*s at 20 degC
),
Poisson=list(
nu=0.25, #for a Poisson solid
nu_u=1/3,
VpVs=sqrt(3) #for a Poisson solid
),
compressibility=list(
Beta_u=2e-11, # a very rigid matrix,
Beta_f=4.4e-10 # a rigid matrix
),
atm=list(
bar=1.013250, # std atm in bars
m_per=10.3, # meters of water per atmosphere
L.=0.0065, # temperature lapse rate K/m
To.=288.15, # sea level standard temperature K
M.=0.0289644, # molar mass of dry air kg/mol
R.=8.31447 # universal gas constant J/(mol*K)
),
conversions=list(
sqm2sqcm=1e4 # m^2 --> cm^2
)
)
#' @rdname hydrogeo.p-constants
#' @param do.str logical; should the structure be printed?
#' @export
#' @aliases constants
# @example
# constants._hg_()
constants._hg_ <- function(do.str=TRUE){
const <- hydrogeo.p::.hg_constants
if (do.str) str(const, comp.str = "++++++++\n\t", no.list=TRUE, digits.d = 9)
return(invisible(const))
}
#' @rdname hydrogeo.p-constants
#' @export
get_constants <- function(){
hydrogeo.p::constants._hg_(do.str=FALSE)
}
#' Ranges of diffusivity for a few types of solid-rock and unconsolidated deposits.
#'
#' In general, hydraulic diffusivities can vary over many orders of magnitude, and
#' laboratory- and field-based estimates often disagree significantly. This
#' dataset represents a (limited) compilation
#' of any available sources (including other compilations!), and is meant to
#' show the range of 'typical' values, expressed in SI units: \eqn{[m^2/s]}. I also
#' include values estimated for fault-core material.
#'
#' \itemize{
#' \item mat.type Type of material
#' \item mat.class Class
#' \item mat.state State
#' \item d.high Upper bound on typical values of diffusivity \eqn{[m^2/s]}
#' \item d.low Lower bound
#' \item ref Reference
#' }
#'
#' The value of \code{ref} gives the source which the diffusivity range is from.
#' Current sources include:
#' \itemize{
#' \item Do06 Doan et al 2006 (Chelungpu fault, Taiwan)
#' \item Ro96 Roeloffs 1996 (shown in Ref. fig. 14)
#' \item Wa00 Wang 2000 (App. C.1)
#' \item Wi00 Wibberley 2002 (MTL, Japan)
#' }
#'
#' @docType data
#' @keywords datasets
#' @name diffusiv
#' @usage data(diffusiv)
# @format A data frame with 19 rows and 6 variables
NULL
#' Shepard's (1954) grain-size classification.
#'
#' Values are percent grain-size due to sand, silt, and clay in
#' sedimentary material.
#'
#' For use in ternary plots.
#'
#' @seealso \code{\link{sand_silt_clay}} and \code{\link{shepard_plot}}
#' @references Shepard, F.P. (1954),
#' Nomenclature based on sand-silt-clay ratios,
#' \emph{Journal of Sedimentary Petrology}, \strong{24}, p. 151-158.
#' @docType data
#' @keywords datasets
#' @name shepard
#' @usage data(shepard)
# @format A data frame with 18 rows and 4 variables
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.