View source: R/Competitor_robSIS_LRM.R
MCP.sis.lrm | R Documentation |
Performs the MCP correlation based Robust Variable Screening (DPD-SIS) under a Linear Regression Model y=X*beta + e, with e ~ N(0, sigma^2) for some unknown sigma, using parallel computation.
MCP.sis.lrm(d, y, X)
d |
Integer. A list of the data matrices. Number of features to be selected. (1<= d <=p) |
y |
Vector. The response vector [n X 1]. |
X |
Matrix. Covariate Matrix [n X p]. |
Reference: Mu W, Xiong S. Some notes on robust sure independence screening. J App Stat. 2014; 41(10):2092–2102.
SIS Vector. A d X 2 vector where the first column contains the variable index (ranked in decreasing order of importance) and the second column consist of the corresponding MDPDE of the slope
n <- 50; p <- 500; beta <- rep(0,p); beta[c(1:5)] <- c(1,1,1,1,1); d <- floor(n/log(n)); Sigma <- diag(p-1); X <- mvrnorm(n, mu=rep(0,p-1), Sigma=Sigma); X0 <- cbind(1,X) Y <- drop(X0 %*% beta + 2*rnorm(n)) SIS<-MCP.sis.lrm(d,Y,X0)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.