dpd.sis | R Documentation |
Performs the Density Power Divergence based Robust Variable Screening (DPD-SIS) and associated Robust Conditional Variable Screening (DPD-CSIS) under a GLM with no variance parameter, using parallel computation.
dpd.sis(d, y, X, alpha, reg = c("lrm", "logistic", "poisson"), XC = matrix(rep(1, nrow(X))), Initial = matrix(rep(1, ncol(X))), Method = "L-BFGS-B")
d |
Integer. A list of the data matrices. Number of features to be selected. (1<= d <=p) |
y |
Vector. The response vector [n X 1]. |
X |
Matrix. Covariate Matrix [n X p]. It shoudl only include variables to be considered for screening. So, it should not contain the intercept or any conditioning variables. |
alpha |
Numeric. The DPD tuning parameter (0<= alpha <=1) |
reg |
A string indiacting the regression model. Possible options are "lrm" (default), "logistic" and "poisson", indicating the linear regression (with unit error variance), logistic regression and poisson regression, respectively. |
Initial |
Vector. Initial values of the marginal slope parameter for estimation process. Default: 1 for all parameters. Optional. |
Method |
String. Numerical optimization method to be used for computation of marginal slopes. Possible options are "L-BFGS-B","Nelder-Mead", "BFGS", "CG", which are the same as the input of 'optim' function in R. Optional. Default is "L-BFGS-B". |
X_C |
Matrix. Conditioning Covariate Matrix [n X q] in DPD-CSIS. Default: only the intercept variable (q=1). Optional for DPD-SIS. |
Reference: Ghosh A, Ponzi E, Sandanger T, Thoresen M. Robust Sure Independence Screening for Non-polynomial dimensional Generalized Linear Models. arXiv preprint 2021; arXiv:2005.12068v2.
SIS Vector. A d X 2 vector where the first column contains the variable index (ranked in decreasing order of importance) and the second column consist of the corresponding MDPDE of the slope
n <- 50; p <- 500; beta <- rep(0,p); beta[c(1:5)] <- c(1,1,1,1,1); d <- floor(n/log(n)); Sigma <- diag(p-1); X <- mvrnorm(n, mu=rep(0,p-1), Sigma=Sigma); X0 <- cbind(1,X) Y <- drop(X0 %*% beta + 2*rnorm(n)) alpha <- 0.3 SIS<-dpd.sis(d,Y,X,alpha, reg='lrm')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.