dpd.sis.lrm | R Documentation |
Performs the Density Power Divergence based Robust Variable Screening (DPD-SIS) under a Linear Regression Model y=X*beta + e, with e ~ N(0, sigma^2) for some unknown sigma, using parallel computation.
dpd.sis.lrm(d, y, X, alpha, Method = "L-BFGS-B", p = ncol(X), Initial = matrix(rep(1, p)))
d |
Integer. A list of the data matrices. Number of features to be selected. (1<= d <=p) |
y |
Vector. The response vector [n X 1]. |
X |
Matrix. Covariate Matrix [n X p]. |
alpha |
Numeric. The DPD tuning parameter (0<= alpha <=1) |
Method |
String. Numerical optimization method to be used for computation of marginal slopes. Possible options are "L-BFGS-B","Nelder-Mead", "BFGS", "CG", which are the same as the input of 'optim' function in R. Optional. Default is "L-BFGS-B". |
p |
Integer. Number of columns in the covariate matrix (X). Optional. |
Initial |
Vector. Initial values of the marginal slope parameter for estimation process. Default: 1 for all parameters. Optional. |
Reference: Ghosh, A. and Thoresen, M. (2021). A Robust Variable Screening procedure for Ultra-high dimensional data. Statistical Methods in Medical Research, 30(8), 1816–1832.
SIS Vector. A d X 2 vector where the first column contains the variable index (ranked in decreasing order of importance) and the second column consist of the corresponding MDPDE of the slope
n <- 50; p <- 500; beta <- rep(0,p); beta[c(1:5)] <- c(1,1,1,1,1); d <- floor(n/log(n)); Sigma <- diag(p-1); X <- mvrnorm(n, mu=rep(0,p-1), Sigma=Sigma); X0 <- cbind(1,X) Y <- drop(X0 %*% beta + 2*rnorm(n)) alpha <- 0.3 SIS<-dpd.sis.lrm(d,Y,X0,alpha)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.