rank.sis.lrm: Rank correlation based SIS under a Linear Regression Model

View source: R/Competitor_robSIS_LRM.R

rank.sis.lrmR Documentation

Rank correlation based SIS under a Linear Regression Model

Description

Performs the rank correlation based Robust Variable Screening (DPD-SIS) under a Linear Regression Model y=X*beta + e, with e ~ N(0, sigma^2) for some unknown sigma, using parallel computation.

Usage

rank.sis.lrm(d, y, X)

Arguments

d

Integer. A list of the data matrices. Number of features to be selected. (1<= d <=p)

y

Vector. The response vector [n X 1].

X

Matrix. Covariate Matrix [n X p].

Details

Reference: Li G, Peng H, Zhang J, Zhu L. Robust rank correlation based screening. Ann Stat. 2012; 40(3):1846-1877.

Value

SIS Vector. A d X 2 vector where the first column contains the variable index (ranked in decreasing order of importance) and the second column consist of the corresponding MDPDE of the slope

Examples


n <- 50; p <- 500;
beta <- rep(0,p); beta[c(1:5)] <- c(1,1,1,1,1);
d <- floor(n/log(n));
Sigma <- diag(p-1);
X <- mvrnorm(n, mu=rep(0,p-1), Sigma=Sigma);
X0 <- cbind(1,X)
Y <- drop(X0 %*% beta + 2*rnorm(n))

SIS<-rank.sis.lrm(d,Y,X0)



abhianik/dpdSIS documentation built on Sept. 5, 2022, 12:40 p.m.