lrm.dpd | R Documentation |
Computes the robust Minimum Density Power Divergence Estimator (MDPDE) under a Linear Regression Model y=X*beta + e, with e ~ N(0, 1).
lrm.dpd(y, X, alpha, method = "L-BFGS-B", p = ncol(X), Initial = matrix(rep(1, p)))
y |
Vector. The response vector [n X 1]. |
X |
Matrix. Covariate Matrix [n X p]. |
alpha |
Numeric. The DPD tuning parameter (0<= alpha <=1) |
p |
Integer. Number of columns in the covariate matrix (X). Optional. |
Initial |
Vector. Initial values of the parameters for the estimation process (initial of sigma needs to be given via log(sigma)). Optional. Default is 1 for all slope parameters, median of y for intercept and MAD(y) for sigma. |
Method |
String. Numerical optimization method to be used for the estimation process. Possible options are "L-BFGS-B","Nelder-Mead", "BFGS", "CG", which are the same as the input of 'optim' function in R. Optional. Default is "L-BFGS-B". |
Reference: Ghosh, A., & Basu, A. (2013). Robust estimation for independent non-homogeneous observations using density power divergence with applications to linear regression. Electronic Journal of statistics, 7, 2420-2456.
A List of two elements. The first list element is a [p X 1] vector containing the parameter estimates. The second list element is an indicator if the numerical optimization within the estimation process has converged: 0 == convergence. (Same as the convergence from 'optim' function of R)
n <- 50; p <- 5; beta <- rep(1,p); sigma<-1 SigmaX <- diag(p-1); X <- mvrnorm(n, mu=rep(0,p-1), Sigma=SigmaX); X0 <- cbind(1,X) Y <- drop(X0 %*% beta + sigma*rnorm(n)) alpha <- 0.3 MDPDE<-lmr.dpd(Y,X0,alpha)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.