#' Cross Validate Group Elastic Net Regression
#'
#' @param x the model matrix
#' @param y the outcome
#' @param cv.method preferably one of "boot632" (the default), "cv", or "repeatedcv".
#' @param nfolds the number of bootstrap or cross-validation folds to use. defaults to 5.
#' @param nrep the number of repetitions for cv.method = "repeatedcv". defaults to 4.
#' @param tunlen the number of values for the unknown hyperparameter to test. defaults to 10.
#' @param crit the criterion by which to evaluate the model performance. must be one of "MAE" (the default)
#' or "MSE".
#' @param max.c the largest value of the constant for calculating lambda. defaults to 8, but
#' may be adjusted. for example, if the error metric becomes constant after a certain
#' value of C, it may be advisable to lower max.c to a smaller value to obtain
#' a more fine-grained grid over the plausible values.
#'
#' @return
#' a train object
#' @export
#'
cv_grpenet = function(x, y, idx, cv.method = "boot632", nfolds = 5, nrep = 4, tunlen = 10, crit = "MAE", max.c = 8){
GRPENET <- list(type = "Regression",
library = "grpreg",
loop = NULL)
GRPENET$parameters <- data.frame(parameter = c("C", "alpha", "base.lambda"),
class = rep("numeric", 3),
label = c("C", "alpha", "base.lambda"))
huber.scale = function(y){
MASS::hubers(y,
initmu =
MASS::hubers(y,
initmu = MASS::hubers(y)$mu,
s = sqrt(mean(c(sd(y)^2, mad(y)^2)))
)$mu)$s
}
lm.betas <- lmSolve(y ~ . , data = cbind.data.frame(y = y, x))
model.mat <- model.matrix(y ~ . , data = cbind.data.frame(y = y, x))
lm.pred <- as.vector(lm.betas) %*% t(model.mat)
lm.res <- as.vector(model.frame(y ~ . , data = cbind.data.frame(y = y, x))[,1]) - lm.pred
GRPENET$noiseSD <- huber.scale(lm.res)
GRPENET$max.c <- max.c
GRPENET$idx <- idx
GRPENET$columns <- colnames(x)
grpenetGrid <- function(x, y, idx = GRPENET$idx, max.c = GRPENET$max.c, noise.sd = GRPENET$noiseSD, len = NULL, search = "grid") {
D = nrow(x)
N = length(y)
lambda0 = noise.sd * sqrt(log(D) / N)
C <- seq(1, max.c, length.out = len)
alphas <- seq(0.0001, 1, len = 6)
## use grid search:
if(search == "grid"){
search = "grid"
} else {
search = "grid"
}
grid <- expand.grid(C = C, alpha = alphas)
grid$base.lambda <- rep(lambda0, nrow(grid))
out <- grid
return(out)
}
GRPENET$grid <- grpenetGrid
grpenetFit <- function(x, y, idx = GRPENET$idx, colms = GRPENET$columns, param, ...) {
f = function(alpha){
sqrt((2 - alpha)^3 / (2 - (1 - alpha)))
}
grpreg::grpreg(
X = as.matrix(x),
y = as.vector(y),
penalty = "grLasso",
group = idx,
family = "gaussian",
lambda = param$C * f(param$alpha) * param$base.lambda,
alpha = param$alpha)
}
GRPENET$fit <- grpenetFit
GRPENET$prob <- grpenetFit
grpenetPred <- function(modelFit, newdata, preProc = NULL, submodels = NULL){
grpreg:::predict.grpreg(modelFit, newdata, exact = TRUE)
}
GRPENET$predict <- grpenetPred
postRobResamp = function(pred, obs) {
isNA <- is.na(pred)
pred <- pred[!isNA]
obs <- obs[!isNA]
if (!is.factor(obs) && is.numeric(obs)) {
if (length(obs) + length(pred) == 0) {
out <- rep(NA, 2)
}
else {
huber.mean = function(y) {
MASS::hubers(y, initmu =
MASS::hubers(y,
initmu = MASS::hubers(y, s = sd(y))$mu,
s = sqrt(mean(c(sd(y)^2, mad(y)^2))))$mu)$mu
}
robmse <- huber.mean((pred - obs)^2)
robmae <- huber.mean(abs(pred - obs))
out <- c(robmse, robmae)
}
names(out) <- c("MSE", "MAE")
}
else {
if (length(obs) + length(pred) == 0) {
out <- rep(NA, 2)
}
else {
pred <- factor(pred, levels = levels(obs))
requireNamespaceQuietStop("e1071")
out <- unlist(e1071::classAgreement(table(obs, pred)))[c("diag",
"kappa")]
}
names(out) <- c("Accuracy", "Kappa")
}
if (any(is.nan(out)))
out[is.nan(out)] <- NA
out
}
robustSummary = function (data, lev = NULL, model = NULL)
{
if (is.character(data$obs))
data$obs <- factor(data$obs, levels = lev)
postRobResamp(data[, "pred"], data[, "obs"])
}
if (cv.method == "repeatedcv") {
fitControl <- trainControl(method = cv.method,
number = nfolds,
repeats = nrep,
savePredictions = "all",
summaryFunction = robustSummary,
search = "grid")
} else {
fitControl <- trainControl(method = cv.method,
number = nfolds,
savePredictions = "all",
summaryFunction = robustSummary,
search = "grid")
}
Formula <- y ~ .
Dat <- cbind.data.frame(y = y, x)
fitted.models <- train(form = Formula,
data = Dat,
method = GRPENET,
metric = crit,
tuneLength = tunlen,
maximize = FALSE,
preProcess = c("center", "scale"),
trControl = fitControl)
f = function(alpha){
sqrt((2 - alpha)^3 / (2 - (1 - alpha)))
}
lambda <- fitted.models$results$C * f(fitted.models$results$alpha) * fitted.models$results$base.lambda
fitted.models$results <- cbind.data.frame(fitted.models$results[,1:3],
lambda = lambda,
fitted.models$results[,4:ncol(fitted.models$results)])
return(fitted.models)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.