#' Cross Validate Penalized Elastic Net S-Estimator with a Fixed Alpha Parameter (PENSE)
#'
#' @param formula a model formula
#' @param data a training data set
#' @param alpha the mixing parameter for the elastic net. alpha = 0 yields ridge regression, and alpha = 1 yields the LASSO.
#' @param cv.method preferably one of "boot632" (the default), "cv", or "repeatedcv".
#' @param nfolds the number of bootstrap or cross-validation folds to use. defaults to 5.
#' @param folds a vector of pre-set cross-validation or bootstrap folds from caret::createResample or
#' caret::createFolds.
#' @param nrep the number of repetitions for cv.method = "repeatedcv". defaults to 4.
#' @param tunlen the number of values for the unknown hyperparameter to test. defaults to 10.
#' @param crit the criterion by which to evaluate the model performance. must be one of "RobustMAE" (the default)
#' or "RobustMSE".
#' @param max.c the largest value of the constant for calculating lambda. defaults to 8, but
#' may be adjusted. for example, if the error metric becomes constant after a certain
#' value of C, it may be advisable to lower max.c to a smaller value to obtain
#' a more fine-grained grid over the plausible values.
#'
#' @return
#' a train object
#' @export
#'
cv_pense_fa = function(formula, data, alpha = 1, cv.method = "boot632", nfolds = 5, nrep = 4, folds = NULL, tunlen = 25, crit = "RobustMAE", max.c = 50){
if (!is.null(folds)) {
nfolds = NULL
}
PENSE <- list(type = "Regression",
library = "pense",
loop = NULL)
PENSE$alpha <- alpha
PENSE$parameters <- data.frame(parameter = c("alpha", "lambda"),
class = rep("numeric", 2),
label = c("alpha", "lambda"))
huber.scale = function(y){
MASS::hubers(y,
initmu =
hubers(y,
initmu = MASS::hubers(y)$mu,
s = sqrt(mean(c(sd(y)^2, mad(y)^2)))
)$mu)$s
}
lm.betas <- lmSolve(formula, data)
model.mat <- model.matrix(formula, data)
lm.pred <- as.vector(lm.betas) %*% t(model.mat)
lm.res <- as.vector(model.frame(formula, data)[,1]) - lm.pred
PENSE$noiseSD <- huber.scale(lm.res)
PENSE$max.c <- max.c
penseGrid <- function(x, y, max.c = PENSE$max.c, alpha = PENSE$alpha, noise.sd = PENSE$noiseSD, len = NULL, search = "grid") {
D = nrow(x)
N = length(y)
lambda0 = noise.sd * sqrt(log(D) / N)
f = function(alpha){
sqrt((2 - alpha)^3 / (2 - (1 - alpha)))
}
C <- seq(0.50, max.c, length.out = len)
lambdas <- C * f(alpha) * lambda0
## use grid search:
if(search == "grid"){
search = "grid"
} else {
search = "grid"
}
grid <- expand.grid(lambda = lambdas, alpha = alpha)
out <- grid
return(out)
}
PENSE$grid <- penseGrid
penseFit <- function(x, y, param, ...) {
pense::pense(
x = as.matrix(x),
y = as.vector(y),
lambda = param$lambda,
alpha = param$alpha,
options = pense_options(delta = 0.30,
maxit = 2500,
mscale_maxit = 1000,
eps = 1e-04,
mscale_eps = 1e-05),
standardize = FALSE
)
}
PENSE$fit <- penseFit
PENSE$prob <- penseFit
pensePred <- function(modelFit, newdata, preProc = NULL, submodels = NULL){
pense:::predict.pense(modelFit, newdata, exact = TRUE)
}
PENSE$predict <- pensePred
postRobResamp = function(pred, obs) {
isNA <- is.na(pred)
pred <- pred[!isNA]
obs <- obs[!isNA]
if (!is.factor(obs) && is.numeric(obs)) {
if (length(obs) + length(pred) == 0) {
out <- rep(NA, 2)
}
else {
huber.mean = function(y) {
MASS::hubers(y, initmu =
MASS::hubers(y,
initmu = MASS::hubers(y, s = sd(y))$mu,
s = sqrt(mean(c(sd(y)^2, mad(y)^2))))$mu)$mu
}
robmse <- huber.mean((pred - obs)^2)
robmae <- huber.mean(abs(pred - obs))
out <- c(robmse, robmae)
}
names(out) <- c("RobustMSE", "RobustMAE")
}
else {
if (length(obs) + length(pred) == 0) {
out <- rep(NA, 2)
}
else {
pred <- factor(pred, levels = levels(obs))
requireNamespaceQuietStop("e1071")
out <- unlist(e1071::classAgreement(table(obs, pred)))[c("diag",
"kappa")]
}
names(out) <- c("Accuracy", "Kappa")
}
if (any(is.nan(out)))
out[is.nan(out)] <- NA
out
}
robustSummary = function (data, lev = NULL, model = NULL)
{
if (is.character(data$obs))
data$obs <- factor(data$obs, levels = lev)
postRobResamp(data[, "pred"], data[, "obs"])
}
if (cv.method == "repeatedcv") {
fitControl <- trainControl(method = cv.method,
number = nfolds,
repeats = nrep,
index = folds,
savePredictions = "all",
summaryFunction = robustSummary,
search = "grid")
} else {
fitControl <- trainControl(method = cv.method,
number = nfolds,
index = folds,
savePredictions = "all",
summaryFunction = robustSummary,
search = "grid")
}
fitted.models <- train(formula, data,
method = PENSE,
metric = crit,
tuneLength = tunlen,
maximize = FALSE,
preProcess = c("center", "scale"),
trControl = fitControl)
return(fitted.models)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.