#' Expectation step for mixture of independent Gaussians
#'
#' @param X NxD data matrix.
#' @param model Model parameters.
#' @return Updated model parameters.
#' @export
#'
expectSelGauss = function(X, model){
alpha = model$alpha
v = model$v
beta = model$beta
m = model$m
W = model$W
cc = model$c
lnf_null = model$lnf
N = dim(X)[1]
D = dim(X)[2]
K = length(alpha)
logRho = matrix(NA, N, K)
Elnf = array(NA, c(D, N, K))
ElnPi = digamma(alpha) - digamma(sum(alpha))
for (k in 1:K){
diff = sweep(X, 2, m[,k], FUN="-")
secondTerm = rep(0, N)
for(d in 1:D){
Elnf[d,,k] = 0.5 * (log(2*pi) - log(0.5/W[d,k]) + digamma(0.5*v[d,k]) - v[d,k]*(diff[,d]^2)*W[d,k] - 1/beta[d,k]) # (10.46)
secondTerm = secondTerm + cc[d]*Elnf[d,,k] + (1-cc[d])*lnf_null[,d]
}
logRho[,k] = ElnPi[k] + secondTerm
}
logSumExpLogRho = apply(logRho, 1, log_sum_exp)
logResp = sweep(logRho, MARGIN = 1, STATS = logSumExpLogRho, FUN = "-")# 10.49
Resp = apply(logResp, 2, exp)
model$Elnf = Elnf
model$logResp = logResp
model$Resp = Resp + 1e-10
model
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.