estimateSizeFactors | R Documentation |
Centering of size factors at unity ensures that division by size factors yields values on the same scale as the raw counts. This is important for the interpretation of the normalized values, as well as comaprisons between features normalized with different size factors (e.g., spike-ins).
estimateSizeFactors(object, ...)
## S4 method for signature 'SummarizedExperiment'
estimateSizeFactors(
object,
assay = 1L,
type = c("mean-ratio", "geometric-mean-ratio", "log-geometric-mean-ratio"),
center = 1L
)
object |
Object. |
assay |
|
type |
libSize <- colSums(counts(object))
libSize / mean(libSize)
libSize / geometricMean(libSize)
log(libSize) / geometricMean(log(libSize)) |
center |
|
... |
Additional arguments. |
The estimated size factors computed by this function can be accessed using
the accessor function sizeFactors()
. Alternative library size estimators
can also be supplied using the assignment function sizeFactors<-()
.
Modified object.
Use sizeFactors()
to access the computed size factor numeric.
Updated 2023-10-04.
DESeq2:
DESeq2::estimateSizeFactors()
.
DESeq2::estimateSizeFactorsForMatrix().
scuttle (now inherited in scater):
scuttle::librarySizeFactors()
.
scuttle::logNormCounts()
.
monocle3:
monocle3::estimate_size_factors()
.
monocle3:::estimate_sf_sparse()
.
data(RangedSummarizedExperiment, package = "AcidTest")
## SummarizedExperiment ====
object <- RangedSummarizedExperiment
object <- estimateSizeFactors(object)
sizeFactors(object)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.