trainCrf | R Documentation |
This function trains a conditional random forest model. It is nearly identical to the cforest
function in the party package but is included for consistency with trainGlm
, trainGam
, and similar functions.
trainCrf( data, resp = names(data)[1], preds = names(data)[2:ncol(data)], family = "binomial", w = ifelse(family == "binomial", TRUE, FALSE), ... )
data |
Data frame. |
resp |
Character or integer. Name or column index of response variable. Default is to use the first column in |
preds |
Character list or integer list. Names of columns or column indices of predictors. Default is to use the second and subsequent columns in |
family |
Name of family for data error structure (see |
w |
Either logical in which case TRUE causes the total weight of presences to equal the total weight of absences (if |
... |
Arguments to pass to |
Object of class RandomForest
.
cforest
, trainRf
## Not run: ### model red-bellied lemurs data(mad0) data(lemurs) # climate data bios <- c(1, 5, 12, 15) clim <- raster::getData('worldclim', var='bio', res=10) clim <- raster::subset(clim, bios) clim <- raster::crop(clim, mad0) # occurrence data occs <- lemurs[lemurs$species == 'Eulemur rubriventer', ] occsEnv <- raster::extract(clim, occs[ , c('longitude', 'latitude')]) # background sites bg <- 2000 # too few cells to locate 10000 background points bgSites <- dismo::randomPoints(clim, 2000) bgEnv <- raster::extract(clim, bgSites) # collate presBg <- rep(c(1, 0), c(nrow(occs), nrow(bgSites))) env <- rbind(occsEnv, bgEnv) env <- cbind(presBg, env) env <- as.data.frame(env) preds <- paste0('bio', bios) set.seed(123) # random forest rf <- trainRf( data = env, resp = 'presBg', preds = preds, ) # conditional random forest crf <- trainCrf( data = env, resp = 'presBg', preds = preds, ) plot(rf) # prediction rasters mapRf1 <- predict(clim, rf, type='prob') # opposite class! mapRf2 <- 1 - predict(clim, rf, type='prob') # correct pointsFx <- function() points(occs[ , c('longitude', 'latitude')]) plot(stack(mapRf1, mapRf2), addfun=pointsFx) # CRFs are tricky... ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.