## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.width=7
)
## -----------------------------------------------------------------------------
library(ClusterBurden)
sapply(list.files("R/", full.names = T), function(x) tryCatch(source(x), error=function(e) NULL))
controls = collect_gnomad_controls(dataset="exome")
cases = collect_gnomad_controls(dataset="genome")
cases[,aff:=1]
attributes(controls)$provenance = attributes(cases)$provenance = NULL
binpval = BIN_test_WES(cases, controls)
head(binpval)
## -----------------------------------------------------------------------------
# nominal significance
binpval[,sum(BIN.test_pvalue < 0.05, na.rm=T)/.N]
# Bonferonni significance
binpval[,sum(BIN.test_pvalue < 0.05/.N)/.N]
## -----------------------------------------------------------------------------
# function to generate lambda inflation metric
lambda = function(p) median(qchisq(p, df=1, lower.tail=FALSE)) / qchisq(0.5, 1)
# lambda across all non-NA p-values
lambda(binpval[!is.na(BIN.test_pvalue), BIN.test_pvalue])
# lambda across p-values not in giant proteins i.e. > 2000 residues
lambda(binpval[!is.na(BIN.test_pvalue) & !grepl("high", pl_flag), BIN.test_pvalue])
## -----------------------------------------------------------------------------
manhattan(binpval, "bin-test", 10, SCALE=0.5)
## -----------------------------------------------------------------------------
attributes(controls)$provenance = attributes(cases)$provenance = "auto"
binpval = BIN_test_WES(cases, controls)
binpval
## -----------------------------------------------------------------------------
# nominal significance
binpval[,sum(BIN.test_pvalue < 0.05, na.rm=T)/.N]
# Bonferonni significance
binpval[,sum(BIN.test_pvalue < 0.05/.N, na.rm=T)/.N]
# function to generate lambda inflation metric
lambda = function(p) median(qchisq(p, df=1, lower.tail=FALSE)) / qchisq(0.5, 1)
# lambda across all non-NA p-values
lambda(binpval[!is.na(BIN.test_pvalue), BIN.test_pvalue])
# manhattan
manhattan(binpval, "bin-test", 10, SCALE=0.5)
## -----------------------------------------------------------------------------
binpval = binpval[!grepl("high", cov_flag1) & !grepl("high", cov_flag2) & !grepl("high", pl_flag)]
# nominal significance
binpval[,sum(BIN.test_pvalue < 0.05, na.rm=T)/.N]
# Bonferonni significance
binpval[,sum(BIN.test_pvalue < 0.05/.N, na.rm=T)/.N]
# function to generate lambda inflation metric
lambda = function(p) median(qchisq(p, df=1, lower.tail=FALSE)) / qchisq(0.5, 1)
# lambda across all non-NA p-values
lambda(binpval[!is.na(BIN.test_pvalue), BIN.test_pvalue])
# manhattan
manhattan(binpval, "bin-test", 10, SCALE=0.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.