R/utility.R

Defines functions progressReporter bound extract_boot rMultinom

Documented in extract_boot progressReporter

## Code is derived from Hmisc package
rMultinom <- function(probs, m){
  d <- dim(probs)
  n <- d[1]
  k <- d[2]
  lev <- dimnames(probs)[[2]]
  if(!length(lev))
    lev <- 1:k

  ran <- matrix(lev[1], ncol=m, nrow=n)
  z <- apply(probs, 1, sum)
  if(any(abs(z-1) > .00001))
    stop('error in multinom: probabilities do not sum to 1')

  U <- apply(probs, 1, cumsum)
  for(i in 1:m)
  {
    un <- rep(runif(n), rep(k,n))
    ran[,i] <- lev[1 + apply(un > U, 2, sum)]
  }

  ran
}


# Extract data
extrCall <- function (x)
{
  if (isS4(x)) x@call else x$call
}


#' Extract bootstrap Confidence interval
extract_boot <- function(x,
                         conf.int = TRUE,
                         conf.level = 0.95,
                         conf.method = c("perc", "bca", "basic", "norm"),
                         ...) {

  conf.method <- rlang::arg_match(conf.method)

  # calculate the bias and standard error
  # this is an adapted version of the code in print.boot, where the bias
  # and standard error are calculated
  boot.out <- x
  index <- 1:ncol(boot.out$t)
  sim <- boot.out$sim
  cl <- boot.out$call
  t <- matrix(boot.out$t[, index], nrow = nrow(boot.out$t))
  allNA <- apply(t, 2L, function(t) all(is.na(t)))
  index <- index[!allNA]
  t <- matrix(t[, !allNA], nrow = nrow(t))
  rn <- paste("t", index, "*", sep = "")

  if (is.null(t0 <- boot.out$t0)) {
    if (is.null(boot.out$call$weights)) {
      op <- cbind(
        apply(t, 2L, mean, na.rm = TRUE),
        sqrt(apply(t, 2L, function(t.st) var(t.st[!is.na(t.st)])))
      )
    } else {
      op <- NULL
      for (i in index) op <- rbind(op, boot::imp.moments(boot.out, index = i)$rat)
      op[, 2L] <- sqrt(op[, 2])
    }
    colnames(op) <- c("estimate", "std.error")
  } else {
    t0 <- boot.out$t0[index]
    if (is.null(boot.out$call$weights)) {
      op <- cbind(t0, apply(t, 2L, mean, na.rm = TRUE) -
                    t0, sqrt(apply(t, 2L, function(t.st) var(t.st[!is.na(t.st)]))))
      colnames(op) <- c("statistic", "bias", "std.error")
    }
    else {
      op <- NULL
      for (i in index) op <- rbind(op, boot::imp.moments(boot.out,
                                                         index = i
      )$rat)
      op <- cbind(t0, op[, 1L] - t0, sqrt(op[, 2L]), apply(t,
                                                           2L, mean,
                                                           na.rm = TRUE
      ))
      colnames(op) <- c("statistic", "bias", "std.error", "estimate")
    }
  }

  # bring in rownames as "term" column, and turn into a data.frame
  ret <- cbind.data.frame(op, stringsAsFactors = FALSE)

  if (conf.int) {
    ci.list <- lapply(seq_along(x$t0),
                      boot::boot.ci,
                      boot.out = x,
                      conf = conf.level, type = conf.method
    )

    ## boot.ci uses c("norm", "basic", "perc", "stud") for types
    ## stores them with longer names
    ci.pos <- pmatch(conf.method, names(ci.list[[1]]))

    if(conf.method == "norm"){
      ci.tab <- cbind(ci.list[[1]][ci.pos][[1]][2:3], ci.list[[2]][ci.pos][[1]][2:3])
    } else {
      ci.tab <- t(sapply(ci.list, function(x) x[[ci.pos]][4:5]))
    }

    colnames(ci.tab) <- c("conf.low", "conf.high")
    ret <- cbind(ret, ci.tab)
  }
  ret
}

bound <- function(obj, trunc = 0.01) {
  if(!is.matrix(obj)){
    quant1 <- quantile(obj, 0 + trunc, na.rm = TRUE)
    quant2 <- quantile(obj, 1 - trunc, na.rm = TRUE)
    obj[obj <= quant1] <- quant1
    obj[obj >  quant2] <- quant2
    obj
  }else{
    apply(obj, 2, function(x){
      quant1 <- quantile(x, 0 + trunc, na.rm = TRUE)
      quant2 <- quantile(x, 1 - trunc, na.rm = TRUE)
      x[x <= quant1] <- quant1
      x[x >  quant2] <- quant2
      x
    })
  }
}


#' Higher order function to display progress.
#'
#' @param total Number of total runs in bootstrap
#'
#' @param nBars Number of bars to generate, default is 100.
#'
#' @param f Function used for progress bar.
#'
#' @param ... functions to be passed to function f.
#'
#' @references
#' https://stackoverflow.com/questions/27019190/txtprogressbar-for-parallel-bootstrap-not-displaying-properly
#'
#' @examples
#'  \dontrun{
#'  boot_res <- boot::boot(data = data, statistic =
#'  progressReporter(500, nBars=100, f = boot_func), R = 500)
#'  }
#'
progressReporter <- function(total, nBars = 100, f, ...) {
  count <- 1
  step <- ceiling(total/nBars)
  cat(paste(rep("|", nBars), collapse=""), "\r")
  flush.console()
  function(...) {
    if (count %% step==0) {
      cat(".")
    }
    count <<- count + 1
    f(...)
  }
}
adayim/causalMed documentation built on June 2, 2020, 4:11 p.m.