phelex: Estimate misclassification in phenotype

Description Usage Arguments Value

View source: R/phelex.R

Description

Estimates misclassification probabilities in observed GWAS phenotype y given genotypes dataset x. The method follows the PheLEx algorithm to predict misclassification probabilities using Adaptive Metropolis-Hastings and mixed model defined by Shafquat et al.

Usage

1
2
3
4
5
phelex(x, y, A = NULL, iterations = 1e+05, alpha.prior = c(10, 1),
  lambda.prior = c(1, 1), link = "pnorm", beta.prior = "norm",
  beta.prior.params = c(0, 1), beta.initial.vec = NULL,
  sigmaA.initial = 0.001, beta.iterations = 2e+05, beta.warmup = 20000,
  verbose = TRUE, stamp = 10000)

Arguments

x

Genotype matrix with dimensions n x m.

y

Phenotype vector with length n.

A

Genetic similarity matrix with dimensions n x n.

iterations

Total number of iterations

alpha.prior

Beta prior parameters for true positve rate

lambda.prior

Beta prior parameters for false positive rate

link

probit or logistic model (options pnorm and plogis respectively)

beta.prior

'norm'(default): Normal prior or 'unif' Uniform prior on fixed effects

beta.prior.params

if beta.prior is norm, then (mean, sd), if unif then (min, max)

beta.initial.vec

Initial values for fixed effects

sigmaA.initial

Starting value for variance parameter sigmaA where u ~ MVN(0, sigmaA * A).

beta.iterations

Number of iterations to sample fixed effects (should be greater than beta.warmup)

beta.warmup

Burn-in/warmup for initial sampling for fixed effects

verbose

Default TRUE. Prints progress information

stamp

Iteration breakpoint to print time

Value

List containing


afrahshafquat/phelex documentation built on Feb. 5, 2020, 7:44 p.m.