phelex_mm: Estimate misclassification in phenotype

Description Usage Arguments Value

View source: R/phelex_mm.R

Description

Estimates misclassification probabilities in observed GWAS phenotype y given genotypes dataset x. The method follows the PheLEx-m algorithm to predict misclassification probabilities using Adaptive Metropolis-Hastings defined by Shafquat et al.

Usage

1
2
3
4
phelex_mm(x, y, iterations = 1e+05, alpha.prior = c(10, 1),
  lambda.prior = c(1, 1), link = "pnorm", beta.prior = "norm",
  beta.prior.params = c(0, 1), beta.initial.vec = NULL, mu.update = 0.5,
  verbose = TRUE, normalize = FALSE, stamp = 1000)

Arguments

x

Genotype matrix with dimensions n x m.

y

Phenotype vector with length n.

iterations

Total number of iterations for Metropolis-Hastings Sampling

alpha.prior

Beta prior parameters for true-positve rate

lambda.prior

Beta prior parameters for false-positive rate.

link

probit or logistic model (options pnorm and plogis respectively)

beta.prior

'norm'(default): Normal prior or 'unif' Uniform prior on fixed effects

beta.prior.params

if beta.prior is norm, then (mean, sd), if unif then (min, max)

beta.initial.vec

Vector of initial values for beta parameters i.e. effect sizes for n snps.

mu.update

Fractions of iterations to start updating mean fixed effects or mu. Default = 0.5

verbose

Default TRUE. Prints progress information

normalize

Default FALSE. Scales liability computed

stamp

Iteration breakpoint to print time

Value

List containing


afrahshafquat/phelex documentation built on Feb. 5, 2020, 7:44 p.m.