Description Usage Arguments Value
Estimates misclassification probabilities in observed GWAS phenotype y given genotypes dataset x The method follows the PheLEx-mh algorithm to predict misclassification probabilities using Gibbs sampling and mixed model defined by Shafquat et al.
1 2 3 |
y |
Phenotype vector with length n. |
x |
Genotype matrix with dimensions n x m. |
A |
Genetic relatedness matrix with dimensions n x n. |
pi1.prior |
hyperparameters for false positive rate pi1. |
pi2.prior |
hyperparameters for false negative rate pi2. |
sigmaA.initial |
Starting value for variance parameter sigmaA where u ~ MVN(0, sigmaA*A). |
u.initial |
Starting values for random effects vector u. Default assumes random values. |
beta.initial.vec |
Initial values for beta parameters in order c(Beta_a_1,...Beta_a_i). Default values are random values for all parameters. |
iterations |
Number of iterations for sampling |
stamp |
Iteration breakpoint to print time |
verbose |
Default TRUE. Prints progress information |
List containing
betas: Matrix of estimated effect sizes for each SNP (SNPs[rows] x iterations[columns]).
parameters: Matrix with estimated parameter values[rows] across iterations[columns]. Order is c(sigmaA, pi1, pi2) where pi1/pi2 = false positive/false negative rates, sigmaA = variance parameter
misclassified.cases: Matrix of misclassification indicators where 1s represent false positives and 0s represent true positives as inferred at each iterations
misclassified.controls: Matrix of misclassification indicators where 1s represent false negatives and 0s represent true negatives as inferred at each iterations
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.