Description Usage Arguments Value
Estimates misclassification probabilities in observed GWAS phenotype y given genotypes dataset x. The method follows the algorithm defined by Rekaya et. al (PMC5138056; 2016) to predict misclassification probabilities using Gibbs Sampling algorithm.
1 2 3 |
y |
Phenotype vector with length n. |
x |
Genotype matrix with dimensions n x i. |
pi1.prior |
hyperparameters for false positive rate pi1. Default Beta(1, 4). |
pi2.prior |
hyperparameters for false negative rate pi2. Default Beta(1, 4). |
beta.initial.vec |
Initial values for beta parameters in order c(Beta_a_1,...Beta_a_i). Default values are random values for all parameters. |
iterations |
Number of iterations for sampling |
stamp |
Iteration breakpoint to print time |
verbose |
Default TRUE. Prints progress information |
List containing
betas: Matrix of estimated effect sizes for each SNP (SNPs[rows] x iterations[columns]).
parameters: Matrix with estimated parameter values[rows] across iterations[columns]. Order is c(mu, pi1, pi2) where mu is mean effect size value, pi1/pi2 false positive/false negative rates.
misclassified.cases: Matrix of misclassification indicators where 1s represent false positives and 0s represent true positives as inferred at each iterations
misclassified.controls: Matrix of misclassification indicators where 1s represent false negatives and 0s represent true negatives as inferred at each iterations
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.