rekaya: Estimate misclassification in phenotype using Gibbs Sampler

Description Usage Arguments Value

View source: R/rekaya.R

Description

Estimates misclassification probabilities in observed GWAS phenotype y given genotypes dataset x. The method follows the algorithm defined by Rekaya et. al (PMC5138056; 2016) to predict misclassification probabilities using Gibbs Sampling algorithm.

Usage

1
2
3
rekaya(y, x, pi1.prior = c(1, 4), pi2.prior = c(1, 4),
  beta.initial.vec = NULL, iterations = 10000, stamp = 1000,
  verbose = T)

Arguments

y

Phenotype vector with length n.

x

Genotype matrix with dimensions n x i.

pi1.prior

hyperparameters for false positive rate pi1. Default Beta(1, 4).

pi2.prior

hyperparameters for false negative rate pi2. Default Beta(1, 4).

beta.initial.vec

Initial values for beta parameters in order c(Beta_a_1,...Beta_a_i). Default values are random values for all parameters.

iterations

Number of iterations for sampling

stamp

Iteration breakpoint to print time

verbose

Default TRUE. Prints progress information

Value

List containing


afrahshafquat/phelex documentation built on Feb. 5, 2020, 7:44 p.m.