Description Usage Arguments Details Value References See Also Examples
Computes gradient (GR), likelihood ratio (LR), Rao score (RS) and Wald (W) test statistics for hypotheses on parameters expressing change between two time points.
1 | change_test(X)
|
X |
data matrix containing the responses of n persons to 2k binary items. Columns 1 to k contain the responses to k items at time point 1, and columns (k+1) to 2k the responses to the same k items at time point 2. |
Assume all items be presented twice (2 time points) to the same persons. The data matrix X has n rows (number of persons) and 2k columns considered as virtual items. Assume a constant shift of item difficulties of each item between the 2 time points represented by one parameter. The shift parameter is the only parameter of interest. Test of hypothesis that shift parameter equals zero against the two-sided alternative that shift parameter is not equal to zero.
A list of test statistics, degrees of freedom, and p-values.
test |
a numeric vector of gradient (GR), likelihood ratio (LR), Rao score (RS), and Wald test statistics. |
df |
degrees of freedom. |
pvalue |
a numeric vector of corresponding p-values. |
call |
the matched call. |
Fischer, G. H. (1995). The Linear Logistic Test Model. In G. H. Fischer & I. W. Molenaar (Eds.), Rasch models: Foundations, Recent Developments, and Applications (pp. 131-155). New York: Springer.
Fischer, G. H. (1983). Logistic Latent Trait Models with Linear Constraints. Psychometrika, 48(1), 3-26.
invar_test
, and LLTM_test
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | # Numerical example with 400 persons and 4 items
# presented twice, thus 8 virtual items
# Data y generated under the assumption that shift parameter equals 0
# (no change from time point 1 to 2)
# design matrix W used only for exmaple data generation
# (not used for estimating in change_test function)
W <- rbind(c(1,0,0,0,0),
c(0,1,0,0,0),
c(0,0,1,0,0),
c(0,0,0,1,0),
c(1,0,0,0,1),
c(0,1,0,0,1),
c(0,0,1,0,1),
c(0,0,0,1,1))
# eta Parameter, first 4 are nuisance
# (easiness parameters of the 4 items at time point 1),
# last one is the shift parameter
eta <- c(-2,-1,1,2,0)
y <- eRm::sim.rasch(persons = rnorm(400), items = colSums(eta * t(W)))
res <- change_test(X = y)
res$test # test statistics
res$df # degrees of freedoms
res$pvalue # p-values
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.