#' read_EDS: cause-specific mortality database
#'
#' Create Demographic-Sanitary Statistics database
#'
#' @export
#'
read_EDS <- function(file) {
# Input: file path
file <- file
# Output: tidy data frame w/ causes of death (CoD)
data <- read_csv2(here(file)) %>%
naniar::replace_with_na_all(condition = ~ .x %in% na_strings) %>%
mutate(
causa_mortis = paste0(causa_mortis_1, ": ", causa_mortis_2),
M_total = as.numeric(M_total),
F_total = as.numeric(F_total)
)
# Output: create year and location variable w/ file name information
data <- data |>
pivot_longer(c(6:ncol(data) - 1),
names_to = "sexo_idade",
values_to = "obitos"
) %>%
mutate(obitos = coalesce(obitos, 0L)) |>
mutate(tmp = gsub("(\\.\\.csv)", "", file)) |>
separate(tmp, into = c("path1", "path2", "path3", "local", "ano")) |>
select(ano, local, CID_1, CID_2, causa_mortis, sexo_idade, obitos)
# TODO: Merge database with ICD and Sex-age "dictionaries"
sexo_idade <- read_csv2(here::here("data/raw/EDS/DIC_sexoidade.csv"))
causamortis <- read_csv(here("data/raw/EDS/DIC_causamortis.csv"))
classification <- read_csv2(here("data/raw/icd/CCHM.csv"))
cchm <- causamortis |> left_join(classification)
data <- reduce(list(data,sexo_idade,cchm), left_join)
return(data)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.