#' MCMC estimation for the Vasicek model
#'
#' Parametric estimation for the Vasicek model using Markov Chain Monte Carlo and
#' involving data augmentation, as proposed in Elerian et al. (2001) and Eraker (2001).
#' The parametric form of the Vasicek model used here is given by
#' \deqn{dX_t = (\alpha - \kappa X_t)dt + \sigma dW_t.}
#'
#' @param X a numeric vector, the sample path of the SDE.
#' @param Delta a single numeric, the time step between two consecutive observations.
#' @param par a numeric vector with dimension three indicating initial values of the
#' parameters. Defaults to NULL, fits a linear model as an initial guess.
#' @param niter an integer, number of iterations.
#' @param burn_in an integer indicating the number of initial iterations to be discarded.
#'
#' @return A list containing a matrix with the estimated coefficients and the
#' associated standard errors.
#'
#' @export
#'
#' @examples
#' \donttest{
#' set.seed(987)
#' x <- rVAS(480, 1/12, 0, 0.08, 0.9, 0.1)
#' est.VAS.MCMC(x)
#' }
#'
#' @references
#' Elerian, O., Chib, S., and Shephard, N. (2001). Likelihood inference for discretely
#' observed nonlinear diffusions. Econometrica, 69(4):959–993.
#'
#' Eraker, B. (2001). MCMC analysis of diffusion models with application to finance.
#' Journal of Business & Economic Statistics, 19(2):177–191.
est.VAS.MCMC <- function(X, Delta = deltat(X), par = NULL, niter = 2000, burn_in = 500) {
if (is.null(par)) {
y <- diff(X) / Delta
init <- summary(lm(y ~ X[-length(X)]))
par <- c(init$coefficients[1,1], -init$coefficients[2,1], init$sigma * sqrt(Delta))
}
est <- MCMC_ou(X, n_obs = length(X) - 1, m_data = 5, niter = niter, total_iter = niter + burn_in,
alpha = par[1]*Delta, kappa = par[2]*Delta, sigma = par[3]*sqrt(Delta))
theta.hat <- est$param / c(Delta, Delta, sqrt(Delta))
se <- est$error/ c(Delta, Delta, sqrt(Delta))
coeff <- cbind(theta.hat, se)
rownames(coeff) <- c("alpha", "kappa", "sigma")
colnames(coeff) <- c("Estimate", "Std. Error")
res <- list(coefficients = coeff)
class(res) <- "estVAS"
return(res)
}
#' MCMC estimation for the CKLS model
#'
#' Parametric estimation for the CKLS model using Markov Chain Monte Carlo and
#' involving data augmentation, as proposed in Elerian et al. (2001) and Eraker (2001).
#' The parametric form of the CKLS model used here is given by
#' \deqn{dX_t = (\alpha - \kappa X_t)dt + \sigma X_t^\gamma dW_t.}
#'
#' @param X a numeric vector, the sample path of the SDE.
#' @param Delta a single numeric, the time step between two consecutive observations.
#' @param par a numeric vector with dimension four indicating initial values of the
#' parameters. Defaults to NULL, fits a linear model using generalized least squares
#' with AR1 correlation and a power variance heteroscedasticity structure.
#' @param niter an integer, number of iterations.
#' @param burn_in an integer indicating the number of initial iterations to be discarded.
#'
#' @return A list containing a matrix with the estimated coefficients and the
#' associated standard errors.
#'
#' @export
#'
#' @examples
#' \donttest{
#' set.seed(987)
#' x <- rCKLS(480, 1/12, 0.09, 0.08, 0.9, 1.2, 1.5)
#' est.CKLS.MCMC(x)
#' }
#'
#' @references
#' Elerian, O., Chib, S., and Shephard, N. (2001). Likelihood inference for discretely
#' observed nonlinear diffusions. Econometrica, 69(4):959–993.
#'
#' Eraker, B. (2001). MCMC analysis of diffusion models with application to finance.
#' Journal of Business & Economic Statistics, 19(2):177–191.
est.CKLS.MCMC <- function(X, Delta = deltat(X), par = NULL, niter = 4000, burn_in = 1000) {
if (is.null(par)) {
yt <- diff(X) / Delta
Xt <- X[-length(X)]
init <- nlme::gls(yt ~ Xt, correlation = nlme::corAR1(), weights = nlme::varPower(form = ~ Xt))
par <- c(init$coefficients[1], -init$coefficients[2], init$sigma*sqrt(Delta), init$modelStruct$varStruct[1])
}
est <- MCMC_CKLS(X, n_obs = length(X) - 1, m_data = 5, niter = niter, total_iter = niter + burn_in,
alpha = par[1]*Delta, kappa = par[2]*Delta, sigma = par[3]*sqrt(Delta), gamma = par[4])
theta.hat <- est$param[-5] / c(Delta, Delta, sqrt(Delta), 1)
se <- est$error[-5] / c(Delta, Delta, sqrt(Delta), 1)
coeff <- cbind(theta.hat, se)
rownames(coeff) <- c("alpha", "kappa", "sigma", "gamma")
colnames(coeff) <- c("Estimate", "Std. Error")
res <- list(coefficients = coeff)
class(res) <- "estCEV"
return(res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.