num_reps <- 2 set.seed(1) options(warn=-1) suppressMessages(library(knitr)) suppressMessages(library(tidyr)) suppressMessages(library(magrittr)) suppressMessages(library(ggplot2)) suppressMessages(library(dplyr)) suppressMessages(library(EnvStats)) # For 'rpareto'. suppressMessages(library(seqgendiff)) # Example to illustrate sensitivity issue for Mageck under strong selection + high prevalence. load("../data/nz_lfc.rda") load("../data/mg_lfc.rda") # Data all from one screen. c903 <- read.table("../data/HT29_c903.tsv", header=T, stringsAsFactors = F)[,c(1:7)] %>% dplyr::select(-ERS717283.plasmid) %>% dplyr::filter(rowSums(.[,3:6]) > 30) # Data from 4 different screens. cFour <- cbind(read.table("../data/HT29_c905.tsv", header=T, stringsAsFactors = F) %>% select(sgRNA, gene, HT29_c905R4), read.table("../data/HT29_c906.tsv", header=T, stringsAsFactors = F) %>% select(HT29_c906R8), read.table("../data/HT29_c907.tsv", header=T, stringsAsFactors = F) %>% select(HT29_c907R7), read.table("../data/HT29_c908.tsv", header=T, stringsAsFactors = F) %>% select(HT29_c908R6)) %>% dplyr::filter(rowSums(.[,3:6]) > 30)
## Common functions. write_data <- function(data){ # Write data for algorithms to use. write.table(data, file = "bthin_input.txt", col.names = T, row.names = F, sep="\t", quote=F) } run_mageck <- function(){ cmd <- "source ~/miniconda3/bin/activate; mageck test -k bthin_input.txt -t treat.1,treat.2 -c control.1,control.2 -n mageck_out" system(cmd) } run_drugz <- function(){ cmd <- "source ~/miniconda3/bin/activate; export PATH=~/git-projects/drugz:$PATH; drugz.py -i bthin_input.txt -c control.1,control.2 -x treat.1,treat.2 -o drugz-out.txt -unpaired" system(cmd) } read_mageck <- function(){ return(read.table("mageck_out.gene_summary.txt", header=T, stringsAsFactors = F)) } read_drugz <- function(){ return(read.table("drugz-out.txt", header=T, stringsAsFactors = F)) } # Process output to add expected logFC. process_output <- function(lfc, type){ if(type == "mageck"){ data <- read_mageck() gene_col <- "id" col.1 <- "neg.fdr" col.2 <- "pos.fdr" }else{ data <- read_drugz() gene_col <- "GENE" col.1 <- "fdr_synth" col.2 <- "fdr_supp" } ret <- data %>% mutate(lfc_bthin = ifelse(!!sym(gene_col) %in% names(lfc), lfc[match(!!sym(gene_col), names(lfc))], 0)) %>% rowwise() %>% mutate(sign.1 = (!!sym(col.1) < 0.1 || !!sym(col.2) < 0.1), # LOD cut-offs for genes to ignore when calculating performance estimates. ignore.1.4 = (abs(lfc_bthin) > 0 && abs(lfc_bthin) < 1.4), ignore.1.2 = (abs(lfc_bthin) > 0 && abs(lfc_bthin) < 1.2), ignore.1 = (abs(lfc_bthin) > 0 && abs(lfc_bthin) < 1), ignore.0.8 = (abs(lfc_bthin) > 0 && abs(lfc_bthin) < 0.8), ignore.0.6 = (abs(lfc_bthin) > 0 && abs(lfc_bthin) < 0.6), ignore.0.4 = (abs(lfc_bthin) > 0 && abs(lfc_bthin) < 0.4), ignore.0.2 = (abs(lfc_bthin) > 0 && abs(lfc_bthin) < 0.2), ignore.0 = F, true_neg = lfc_bthin==0, true_pos = abs(lfc_bthin)>0, false_pos = (sign.1 && lfc_bthin==0), false_neg = (!sign.1 && abs(lfc_bthin)>0)) %>% ungroup() return(ret) } # Estimate performance. estimate_performance <- function(data){ pf <- NULL for(i in seq(0,1.4,by=0.2)){ pf <- rbind(pf, data %>% filter(! (!!sym(paste("ignore.",i,sep="")))) %>% summarise(logFC.LOD = i, Specificity = 1-sum(false_pos)/sum(true_neg), Sensitivity = 1-sum(false_neg)/sum(true_pos)) ) } return(pf) } # Randomly sample logFC. rand_logfc <- function(fun, params, num){ # Params expected to be in same order as function definition. return(fun(num, params[[1]], params[[2]])) } # Replicate signal additions. add_signal_repl <- function(data, num_reps, num_genes, signal_fun, signal_params, thin_library = F, add_signal = T){ # 'data' expected to have plasmid column(s) removed in advance. ret_perf <- NULL ret_sig_mageck <- ret_sig_drugz <- list() for(i in 1:num_reps){ # 1. Randomly sample genes to receive a signal sampled from a particular distribution. if(add_signal){ lfc <- rand_logfc(signal_fun, signal_params, num_genes) names(lfc) <- sample(unique(data$gene), num_genes, replace=F) }else{ lfc <- rep(0,length(unique(data$gene))) names(lfc) <- unique(data$gene) } # 2. Build coef matrix. coef_mat <- as.matrix(data %>% dplyr::select(gene) %>% dplyr::mutate(gene_indicator = ifelse(gene %in% names(lfc),1,0)) %>% dplyr::group_by(gene) %>% dplyr::mutate(gene_indicator = ifelse(gene[1] %in% names(lfc), rep(lfc[names(lfc)==gene[1]],n()), rep(0,n()))) %>% dplyr::ungroup() %>% dplyr::select(gene_indicator)) # 3. Build design matrix. design_cols <- rep(0,4) treat_cols <- sample(1:4,2,replace=F) design_cols[treat_cols] <- 1 design_mat <- matrix(design_cols) colnames(design_mat) <- "treatment" # 4A. Thin two of the libraries randomly by 1/4. if(thin_library){ thin_cols <- sample(1:4,2,replace=F) scaling_factor <- rep(0,4) scaling_factor[thin_cols] <- 0.5 thout_lib <- thin_lib(mat = as.matrix(data[,3:ncol(data)]), thinlog2 = scaling_factor) data <- data.frame(data[,1:2], thout_lib$mat, stringsAsFactors = F) } if(add_signal){ # 4B. Add signal to randomly sampled genes and their gRNAs. thout <- thin_diff(mat = as.matrix(data[,3:ncol(data)]), design_fixed = design_mat, coef_fixed = coef_mat) }else{ thout <- list() thout$mat <- as.matrix(data[,3:ncol(data)]) } # 5. Assemble input data for algorithms. data_input <- data.frame(data[,1:2], thout$mat, stringsAsFactors = F) colnames(data_input)[setdiff(1:4,treat_cols)+2] <- paste("control.",1:2,sep="") colnames(data_input)[treat_cols+2] <- paste("treat.",1:2,sep="") write_data(data_input) # 6. Run algorithms. run_mageck() run_drugz() # 7. Add expected logFC. mageck_out <- process_output(lfc, type = "mageck") drugz_out <- process_output(lfc, type = "drugz") # 8. Estimate performance. pf <- rbind(data.frame(Algorithm="Mageck",estimate_performance(mageck_out)), data.frame(Algorithm="drugZ",estimate_performance(drugz_out))) ret_perf <- rbind(ret_perf, pf) ret_sig_mageck[[i]] <- mageck_out ret_sig_drugz[[i]] <- drugz_out } ret <- list() ret$signal_mageck <- ret_sig_mageck ret$signal_drugz <- ret_sig_drugz ret$performance <- ret_perf return(ret) } # Plot sensitivity across LODs. plot_sens_lod <- function(data){ pl <- ggplot(data$performance, aes(logFC.LOD,Sensitivity,color=Algorithm)) + geom_point() + geom_smooth(se=F) + facet_wrap(~dataset) print(pl) }
setwd("../tmp")
From a single high prevalence (10%), strong selection (SD 1.5) example.
# Compare normZ for logFC groups (expected). nz_lfc <- rbind(p10.s$signal_drugz[[1]] %>% mutate(selection = "Strong"), p10.m$signal_drugz[[1]] %>% mutate(selection = "Moderate"), p10.w$signal_drugz[[1]] %>% mutate(selection = "Weak")) %>% filter(abs(lfc_bthin) > 0) %>% mutate(selection = factor(selection, levels=c("Weak","Moderate","Strong")), normZ.abs = abs(normZ), lfc_group.abs = case_when(between(abs(lfc_bthin),0.01,0.2499999) ~ "[0.01,0.25)", between(abs(lfc_bthin),0.25,0.4999999) ~ "[0.25,0.5)", between(abs(lfc_bthin),0.5,0.9999999) ~ "[0.5,1)", between(abs(lfc_bthin),1,1.4999999) ~ "[1,1.5)", between(abs(lfc_bthin),1.5,1.9999999) ~ "[1.5,2)", abs(lfc_bthin) >= 2 ~ ">=2")) %>% filter(!is.na(lfc_group.abs)) # Mageck comparison using both RRA p-value score and observed logFC. mg_lfc <- rbind(p10.s$signal_mageck[[1]] %>% mutate(selection = "Strong"), p10.m$signal_mageck[[1]] %>% mutate(selection = "Moderate"), p10.w$signal_mageck[[1]] %>% mutate(selection = "Weak")) %>% rowwise() %>% mutate(selection = factor(selection, levels=c("Weak","Moderate","Strong")), logfc.obs = max(c(abs(neg.lfc),abs(pos.lfc))), log.RAA.pval = -log(min(c(neg.score,pos.score))), lfc_group.abs = case_when(between(abs(lfc_bthin),0.01,0.2499999) ~ "[0.01,0.25)", between(abs(lfc_bthin),0.25,0.4999999) ~ "[0.25,0.5)", between(abs(lfc_bthin),0.5,0.9999999) ~ "[0.5,1)", between(abs(lfc_bthin),1,1.4999999) ~ "[1,1.5)", between(abs(lfc_bthin),1.5,1.9999999) ~ "[1.5,2)", abs(lfc_bthin) >= 2 ~ ">=2")) %>% ungroup() %>% filter(!is.na(lfc_group.abs))
ggplot(nz_lfc,aes(lfc_group.abs,abs(sumZ),color=selection)) + geom_point(position=position_dodge(width=0.75)) + geom_boxplot() + ylim(0,45) + ggtitle("drugZ sumZ by added signal groups: 10% prevalence") ggplot(nz_lfc,aes(lfc_group.abs,normZ.abs,color=selection)) + geom_point(position=position_dodge(width=0.75)) + geom_boxplot() + ggtitle("drugZ normZ by added signal groups: 10% prevalence") ggplot(mg_lfc,aes(lfc_group.abs,logfc.obs,color=selection)) + geom_point(position=position_dodge(width=0.75)) + geom_boxplot() + ggtitle("Mageck logfc_obs by added signal groups: 10% prevalence") ggplot(mg_lfc,aes(lfc_group.abs,log.RAA.pval,color=selection)) + geom_point(position=position_dodge(width=0.75)) + geom_boxplot() + ggtitle("Mageck log(RAA.pval) by added signal groups: 10% prevalence")
# Strong selection. p10.s <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1.5)), stringsAsFactors = F)) # Moderate selection. p10.m <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1)), stringsAsFactors = F)) # Weak selection. p10.w <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = 0, sd = 0.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = 0, sd = 0.5)), stringsAsFactors = F)) pall <- rbind(data.frame(Selection = "Strong", Prevalence = "10%", thin_lib = F, p10.s), data.frame(Selection = "Moderate", Prevalence = "10%", thin_lib = F, p10.m), data.frame(Selection = "Weak", Prevalence = "10%", thin_lib = F, p10.w)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p10.s) plot_sens_lod(p10.m) plot_sens_lod(p10.w)
# Strong selection. p10.s.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1.5), thin_library = T), stringsAsFactors = F)) # Moderate selection. p10.m.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1), thin_library = T), stringsAsFactors = F)) # Weak selection. p10.w.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = 0, sd = 0.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = 0, sd = 0.5), thin_library = T), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "10%", thin_lib = T, p10.s.tl), data.frame(Selection = "Moderate", Prevalence = "10%", thin_lib = T, p10.m.tl), data.frame(Selection = "Weak", Prevalence = "10%", thin_lib = T, p10.w.tl)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p10.s.tl) plot_sens_lod(p10.m.tl) plot_sens_lod(p10.w.tl)
# Strong selection. p5.s <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1.5)), stringsAsFactors = F)) # Moderate selection. p5.m <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1)), stringsAsFactors = F)) # Weak selection. p5.w <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = 0, sd = 0.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = 0, sd = 0.5)), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "5%", thin_lib = F, p5.s), data.frame(Selection = "Moderate", Prevalence = "5%", thin_lib = F, p5.m), data.frame(Selection = "Weak", Prevalence = "5%", thin_lib = F, p5.w)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p5.s) plot_sens_lod(p5.m) plot_sens_lod(p5.w)
# Strong selection. p5.s.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1.5), thin_library = T), stringsAsFactors = F)) # Moderate selection. p5.m.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1), thin_library = T), stringsAsFactors = F)) # Weak selection. p5.w.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = 0, sd = 0.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = 0, sd = 0.5), thin_library = T), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "5%", thin_lib = T, p5.s.tl), data.frame(Selection = "Moderate", Prevalence = "5%", thin_lib = T, p5.m.tl), data.frame(Selection = "Weak", Prevalence = "5%", thin_lib = T, p5.w.tl)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p5.s.tl) plot_sens_lod(p5.m.tl) plot_sens_lod(p5.w.tl)
# Strong selection. p2.5.s <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1.5)), stringsAsFactors = F)) # Moderate selection. p2.5.m <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1)), stringsAsFactors = F)) # Weak selection. p2.5.w <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = 0, sd = 0.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = 0, sd = 0.5)), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "2.5%", thin_lib = F, p2.5.s), data.frame(Selection = "Moderate", Prevalence = "2.5%", thin_lib = F, p2.5.m), data.frame(Selection = "Weak", Prevalence = "2.5%", thin_lib = F, p2.5.w)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p2.5.s) plot_sens_lod(p2.5.m) plot_sens_lod(p2.5.w)
# Strong selection. p2.5.s.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1.5), thin_library = T), stringsAsFactors = F)) # Moderate selection. p2.5.m.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1), thin_library = T), stringsAsFactors = F)) # Weak selection. p2.5.w.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = 0, sd = 0.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = 0, sd = 0.5), thin_library = T), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "2.5%", thin_lib = T, p2.5.s.tl), data.frame(Selection = "Moderate", Prevalence = "2.5%", thin_lib = T, p2.5.m.tl), data.frame(Selection = "Weak", Prevalence = "2.5%", thin_lib = T, p2.5.w.tl)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p2.5.s.tl) plot_sens_lod(p2.5.m.tl) plot_sens_lod(p2.5.w.tl)
# Strong selection. p1.s <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1.5)), stringsAsFactors = F)) # Moderate selection. p1.m <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1)), stringsAsFactors = F)) # Weak selection. p1.w <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = 0, sd = 0.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = 0, sd = 0.5)), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "1%", thin_lib = F, p1.s), data.frame(Selection = "Moderate", Prevalence = "1%", thin_lib = F, p1.m), data.frame(Selection = "Weak", Prevalence = "1%", thin_lib = F, p1.w)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p1.s) plot_sens_lod(p1.m) plot_sens_lod(p1.w)
# Strong selection. p1.s.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1.5), thin_library = T), stringsAsFactors = F)) # Moderate selection. p1.m.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1), thin_library = T), stringsAsFactors = F)) # Weak selection. p1.w.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = 0, sd = 0.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = 0, sd = 0.5), thin_library = T), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "1%", thin_lib = T, p1.s.tl), data.frame(Selection = "Moderate", Prevalence = "1%", thin_lib = T, p1.m.tl), data.frame(Selection = "Weak", Prevalence = "1%", thin_lib = T, p1.w.tl)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p1.s.tl) plot_sens_lod(p1.m.tl) plot_sens_lod(p1.w.tl)
# Strong selection. p01.s <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1.5)), stringsAsFactors = F)) # Moderate selection. p01.m <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1)), stringsAsFactors = F)) # Weak selection. p01.w <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = 0, sd = 0.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = 0, sd = 0.5)), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "0.1%", thin_lib = F, p01.s), data.frame(Selection = "Moderate", Prevalence = "0.1%", thin_lib = F, p01.m), data.frame(Selection = "Weak", Prevalence = "0.1%", thin_lib = F, p01.w)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p01.s) plot_sens_lod(p01.m) plot_sens_lod(p01.w)
# Strong selection. p01.s.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1.5), thin_library = T), stringsAsFactors = F)) # Moderate selection. p01.m.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = 0, sd = 1), thin_library = T), stringsAsFactors = F)) # Weak selection. p01.w.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = 0, sd = 0.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = 0, sd = 0.5), thin_library = T), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "0.1%", thin_lib = T, p01.s.tl), data.frame(Selection = "Moderate", Prevalence = "0.1%", thin_lib = T, p01.m.tl), data.frame(Selection = "Weak", Prevalence = "0.1%", thin_lib = T, p01.w.tl)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p01.s.tl) plot_sens_lod(p01.m.tl) plot_sens_lod(p01.w.tl)
gauss_mean <- 0.1
# Strong selection. p10.s.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5)), stringsAsFactors = F)) # Moderate selection. p10.m.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1)), stringsAsFactors = F)) # Weak selection. p10.w.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5)), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "10%", thin_lib = F, p10.s.as), data.frame(Selection = "Moderate", Prevalence = "10%", thin_lib = F, p10.m.as), data.frame(Selection = "Weak", Prevalence = "10%", thin_lib = F, p10.w.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p10.s.as) plot_sens_lod(p10.m.as) plot_sens_lod(p10.w.as)
# Strong selection. p10.s.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5), thin_library = T), stringsAsFactors = F)) # Moderate selection. p10.m.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1), thin_library = T), stringsAsFactors = F)) # Weak selection. p10.w.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5), thin_library = T), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "10%", thin_lib = T, p10.s.tl.as), data.frame(Selection = "Moderate", Prevalence = "10%", thin_lib = T, p10.m.tl.as), data.frame(Selection = "Weak", Prevalence = "10%", thin_lib = T, p10.w.tl.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p10.s.tl.as) plot_sens_lod(p10.m.tl.as) plot_sens_lod(p10.w.tl.as)
# Strong selection. p5.s.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5)), stringsAsFactors = F)) # Moderate selection. p5.m.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1)), stringsAsFactors = F)) # Weak selection. p5.w.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5)), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "5%", thin_lib = F, p5.s.as), data.frame(Selection = "Moderate", Prevalence = "5%", thin_lib = F, p5.m.as), data.frame(Selection = "Weak", Prevalence = "5%", thin_lib = F, p5.w.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p5.s.as) plot_sens_lod(p5.m.as) plot_sens_lod(p5.w.as)
# Strong selection. p5.s.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5), thin_library = T), stringsAsFactors = F)) # Moderate selection. p5.m.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1), thin_library = T), stringsAsFactors = F)) # Weak selection. p5.w.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5), thin_library = T), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "5%", thin_lib = T, p5.s.tl.as), data.frame(Selection = "Moderate", Prevalence = "5%", thin_lib = T, p5.m.tl.as), data.frame(Selection = "Weak", Prevalence = "5%", thin_lib = T, p5.w.tl.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p5.s.tl.as) plot_sens_lod(p5.m.tl.as) plot_sens_lod(p5.w.tl.as)
# Strong selection. p2.5.s.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5)), stringsAsFactors = F)) # Moderate selection. p2.5.m.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1)), stringsAsFactors = F)) # Weak selection. p2.5.w.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5)), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "2.5%", thin_lib = F, p2.5.s.as), data.frame(Selection = "Moderate", Prevalence = "2.5%", thin_lib = F, p2.5.m.as), data.frame(Selection = "Weak", Prevalence = "2.5%", thin_lib = F, p2.5.w.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p2.5.s.as) plot_sens_lod(p2.5.m.as) plot_sens_lod(p2.5.w.as)
# Strong selection. p2.5.s.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5), thin_library = T), stringsAsFactors = F)) # Moderate selection. p2.5.m.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1), thin_library = T), stringsAsFactors = F)) # Weak selection. p2.5.w.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5), thin_library = T), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "2.5%", thin_lib = T, p2.5.s.tl.as), data.frame(Selection = "Moderate", Prevalence = "2.5%", thin_lib = T, p2.5.m.tl.as), data.frame(Selection = "Weak", Prevalence = "2.5%", thin_lib = T, p2.5.w.tl.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p2.5.s.tl.as) plot_sens_lod(p2.5.m.tl.as) plot_sens_lod(p2.5.w.tl.as)
# Strong selection. p1.s.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5)), stringsAsFactors = F)) # Moderate selection. p1.m.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1)), stringsAsFactors = F)) # Weak selection. p1.w.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5)), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "1%", thin_lib = F, p1.s.as), data.frame(Selection = "Moderate", Prevalence = "1%", thin_lib = F, p1.m.as), data.frame(Selection = "Weak", Prevalence = "1%", thin_lib = F, p1.w.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p1.s.as) plot_sens_lod(p1.m.as) plot_sens_lod(p1.w.as)
# Strong selection. p1.s.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5), thin_library = T), stringsAsFactors = F)) # Moderate selection. p1.m.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1), thin_library = T), stringsAsFactors = F)) # Weak selection. p1.w.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5), thin_library = T), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "1%", thin_lib = T, p1.s.tl.as), data.frame(Selection = "Moderate", Prevalence = "1%", thin_lib = T, p1.m.tl.as), data.frame(Selection = "Weak", Prevalence = "1%", thin_lib = T, p1.w.tl.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p1.s.tl.as) plot_sens_lod(p1.m.tl.as) plot_sens_lod(p1.w.tl.as)
# Strong selection. p01.s.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5)), stringsAsFactors = F)) # Moderate selection. p01.m.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1)), stringsAsFactors = F)) # Weak selection. p01.w.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5)), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "0.1%", thin_lib = F, p01.s.as), data.frame(Selection = "Moderate", Prevalence = "0.1%", thin_lib = F, p01.m.as), data.frame(Selection = "Weak", Prevalence = "0.1%", thin_lib = F, p01.w.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p01.s.as) plot_sens_lod(p01.m.as) plot_sens_lod(p01.w.as)
# Strong selection. p01.s.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5), thin_library = T), stringsAsFactors = F)) # Moderate selection. p01.m.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1), thin_library = T), stringsAsFactors = F)) # Weak selection. p01.w.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5), thin_library = T), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "0.1%", thin_lib = T, p01.s.tl.as), data.frame(Selection = "Moderate", Prevalence = "0.1%", thin_lib = T, p01.m.tl.as), data.frame(Selection = "Weak", Prevalence = "0.1%", thin_lib = T, p01.w.tl.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p01.s.tl.as) plot_sens_lod(p01.m.tl.as) plot_sens_lod(p01.w.tl.as)
gamma_params.strong <- list(shape = 1, scale = 1) gamma_params.moderate <- list(shape = 1, scale = 2) gamma_params.weak <- list(shape = 1, scale = 3)
# Strong selection. p10.s <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rgamma, signal_params = gamma_params.strong), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rgamma, signal_params = gamma_params.strong), stringsAsFactors = F)) # Moderate selection. p10.m <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rgamma, signal_params = gamma_params.moderate), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rgamma, signal_params =gamma_params.moderate), stringsAsFactors = F)) # Weak selection. p10.w <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rgamma, signal_params = gamma_params.weak), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rgamma, signal_params = gamma_params.weak), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "10%", thin_lib = F, p10.s), data.frame(Selection = "Moderate", Prevalence = "10%", thin_lib = F, p10.m), data.frame(Selection = "Weak", Prevalence = "10%", thin_lib = F, p10.w)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p10.s) plot_sens_lod(p10.m) plot_sens_lod(p10.w)
# Strong selection. p10.s.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rgamma, signal_params = gamma_params.strong, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rgamma, signal_params = gamma_params.strong, thin_library = T), stringsAsFactors = F)) # Moderate selection. p10.m.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rgamma, signal_params = gamma_params.moderate, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rgamma, signal_params = gamma_params.moderate, thin_library = T), stringsAsFactors = F)) # Weak selection. p10.w.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rgamma, signal_params = gamma_params.weak, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rgamma, signal_params = gamma_params.weak, thin_library = T), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "10%", thin_lib = T, p10.s.tl), data.frame(Selection = "Moderate", Prevalence = "10%", thin_lib = T, p10.m.tl), data.frame(Selection = "Weak", Prevalence = "10%", thin_lib = T, p10.w.tl)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p10.s.tl) plot_sens_lod(p10.m.tl) plot_sens_lod(p10.w.tl)
# Strong selection. p5.s <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rgamma, signal_params = gamma_params.strong), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rgamma, signal_params = gamma_params.strong), stringsAsFactors = F)) # Moderate selection. p5.m <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rgamma, signal_params = gamma_params.moderate), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rgamma, signal_params = gamma_params.moderate), stringsAsFactors = F)) # Weak selection. p5.w <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rgamma, signal_params = gamma_params.weak), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rgamma, signal_params = gamma_params.weak), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "5%", thin_lib = F, p5.s), data.frame(Selection = "Moderate", Prevalence = "5%", thin_lib = F, p5.m), data.frame(Selection = "Weak", Prevalence = "5%", thin_lib = F, p5.w)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p5.s) plot_sens_lod(p5.m) plot_sens_lod(p5.w)
# Strong selection. p5.s.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rgamma, signal_params = gamma_params.strong, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rgamma, signal_params = gamma_params.strong, thin_library = T), stringsAsFactors = F)) # Moderate selection. p5.m.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rgamma, signal_params = gamma_params.moderate, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rgamma, signal_params = gamma_params.moderate, thin_library = T), stringsAsFactors = F)) # Weak selection. p5.w.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rgamma, signal_params = gamma_params.weak, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rgamma, signal_params = gamma_params.weak, thin_library = T), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "5%", thin_lib = T, p5.s.tl), data.frame(Selection = "Moderate", Prevalence = "5%", thin_lib = T, p5.m.tl), data.frame(Selection = "Weak", Prevalence = "5%", thin_lib = T, p5.w.tl)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p5.s.tl) plot_sens_lod(p5.m.tl) plot_sens_lod(p5.w.tl)
# Strong selection. p2.5.s <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rgamma, signal_params = gamma_params.strong), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rgamma, signal_params = gamma_params.strong), stringsAsFactors = F)) # Moderate selection. p2.5.m <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rgamma, signal_params = gamma_params.moderate), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rgamma, signal_params = gamma_params.moderate), stringsAsFactors = F)) # Weak selection. p2.5.w <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rgamma, signal_params = gamma_params.weak), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rgamma, signal_params = gamma_params.weak), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "2.5%", thin_lib = F, p2.5.s), data.frame(Selection = "Moderate", Prevalence = "2.5%", thin_lib = F, p2.5.m), data.frame(Selection = "Weak", Prevalence = "2.5%", thin_lib = F, p2.5.w)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p2.5.s) plot_sens_lod(p2.5.m) plot_sens_lod(p2.5.w)
# Strong selection. p2.5.s.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rgamma, signal_params = gamma_params.strong, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rgamma, signal_params = gamma_params.strong, thin_library = T), stringsAsFactors = F)) # Moderate selection. p2.5.m.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rgamma, signal_params = gamma_params.moderate, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rgamma, signal_params = gamma_params.moderate, thin_library = T), stringsAsFactors = F)) # Weak selection. p2.5.w.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rgamma, signal_params = gamma_params.weak, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rgamma, signal_params = gamma_params.weak, thin_library = T), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "2.5%", thin_lib = T, p2.5.s.tl), data.frame(Selection = "Moderate", Prevalence = "2.5%", thin_lib = T, p2.5.m.tl), data.frame(Selection = "Weak", Prevalence = "2.5%", thin_lib = T, p2.5.w.tl)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p2.5.s.tl) plot_sens_lod(p2.5.m.tl) plot_sens_lod(p2.5.w.tl)
# Strong selection. p1.s <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rgamma, signal_params = gamma_params.strong), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rgamma, signal_params = gamma_params.strong), stringsAsFactors = F)) # Moderate selection. p1.m <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rgamma, signal_params = gamma_params.moderate), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rgamma, signal_params = gamma_params.moderate), stringsAsFactors = F)) # Weak selection. p1.w <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rgamma, signal_params = gamma_params.weak), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rgamma, signal_params = gamma_params.weak), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "1%", thin_lib = F, p1.s), data.frame(Selection = "Moderate", Prevalence = "1%", thin_lib = F, p1.m), data.frame(Selection = "Weak", Prevalence = "1%", thin_lib = F, p1.w)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p1.s) plot_sens_lod(p1.m) plot_sens_lod(p1.w)
# Strong selection. p1.s.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rgamma, signal_params = gamma_params.strong, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rgamma, signal_params = gamma_params.strong, thin_library = T), stringsAsFactors = F)) # Moderate selection. p1.m.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rgamma, signal_params = gamma_params.moderate, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rgamma, signal_params = gamma_params.moderate, thin_library = T), stringsAsFactors = F)) # Weak selection. p1.w.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rgamma, signal_params = gamma_params.weak, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rgamma, signal_params = gamma_params.weak, thin_library = T), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "1%", thin_lib = T, p1.s.tl), data.frame(Selection = "Moderate", Prevalence = "1%", thin_lib = T, p1.m.tl), data.frame(Selection = "Weak", Prevalence = "1%", thin_lib = T, p1.w.tl)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p1.s.tl) plot_sens_lod(p1.m.tl) plot_sens_lod(p1.w.tl)
# Strong selection. p01.s <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rgamma, signal_params = gamma_params.strong), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rgamma, signal_params = gamma_params.strong), stringsAsFactors = F)) # Moderate selection. p01.m <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rgamma, signal_params = gamma_params.moderate), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rgamma, signal_params = gamma_params.moderate), stringsAsFactors = F)) # Weak selection. p01.w <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rgamma, signal_params = gamma_params.weak), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rgamma, signal_params = gamma_params.weak), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "0.1%", thin_lib = F, p01.s), data.frame(Selection = "Moderate", Prevalence = "0.1%", thin_lib = F, p01.m), data.frame(Selection = "Weak", Prevalence = "0.1%", thin_lib = F, p01.w)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p01.s) plot_sens_lod(p01.m) plot_sens_lod(p01.w)
# Strong selection. p01.s.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rgamma, signal_params = gamma_params.strong, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rgamma, signal_params = gamma_params.strong, thin_library = T), stringsAsFactors = F)) # Moderate selection. p01.m.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rgamma, signal_params = gamma_params.moderate, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rgamma, signal_params = gamma_params.moderate, thin_library = T), stringsAsFactors = F)) # Weak selection. p01.w.tl <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rgamma, signal_params = gamma_params.weak, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rgamma, signal_params = gamma_params.weak, thin_library = T), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "0.1%", thin_lib = T, p01.s.tl), data.frame(Selection = "Moderate", Prevalence = "0.1%", thin_lib = T, p01.m.tl), data.frame(Selection = "Weak", Prevalence = "0.1%", thin_lib = T, p01.w.tl)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p01.s.tl) plot_sens_lod(p01.m.tl) plot_sens_lod(p01.w.tl)
gauss_mean <- 1.5
# Strong selection. p10.s.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5)), stringsAsFactors = F)) # Moderate selection. p10.m.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1)), stringsAsFactors = F)) # Weak selection. p10.w.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5)), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "10%", thin_lib = F, p10.s.as), data.frame(Selection = "Moderate", Prevalence = "10%", thin_lib = F, p10.m.as), data.frame(Selection = "Weak", Prevalence = "10%", thin_lib = F, p10.w.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p10.s.as) plot_sens_lod(p10.m.as) plot_sens_lod(p10.w.as)
# Strong selection. p10.s.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5), thin_library = T), stringsAsFactors = F)) # Moderate selection. p10.m.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1), thin_library = T), stringsAsFactors = F)) # Weak selection. p10.w.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5), thin_library = T), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "10%", thin_lib = T, p10.s.tl.as), data.frame(Selection = "Moderate", Prevalence = "10%", thin_lib = T, p10.m.tl.as), data.frame(Selection = "Weak", Prevalence = "10%", thin_lib = T, p10.w.tl.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p10.s.tl.as) plot_sens_lod(p10.m.tl.as) plot_sens_lod(p10.w.tl.as)
# Strong selection. p5.s.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5)), stringsAsFactors = F)) # Moderate selection. p5.m.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1)), stringsAsFactors = F)) # Weak selection. p5.w.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5)), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "5%", thin_lib = F, p5.s.as), data.frame(Selection = "Moderate", Prevalence = "5%", thin_lib = F, p5.m.as), data.frame(Selection = "Weak", Prevalence = "5%", thin_lib = F, p5.w.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p5.s.as) plot_sens_lod(p5.m.as) plot_sens_lod(p5.w.as)
# Strong selection. p5.s.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5), thin_library = T), stringsAsFactors = F)) # Moderate selection. p5.m.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1), thin_library = T), stringsAsFactors = F)) # Weak selection. p5.w.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5), thin_library = T), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "5%", thin_lib = T, p5.s.tl.as), data.frame(Selection = "Moderate", Prevalence = "5%", thin_lib = T, p5.m.tl.as), data.frame(Selection = "Weak", Prevalence = "5%", thin_lib = T, p5.w.tl.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p5.s.tl.as) plot_sens_lod(p5.m.tl.as) plot_sens_lod(p5.w.tl.as)
# Strong selection. p2.5.s.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5)), stringsAsFactors = F)) # Moderate selection. p2.5.m.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1)), stringsAsFactors = F)) # Weak selection. p2.5.w.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5)), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "2.5%", thin_lib = F, p2.5.s.as), data.frame(Selection = "Moderate", Prevalence = "2.5%", thin_lib = F, p2.5.m.as), data.frame(Selection = "Weak", Prevalence = "2.5%", thin_lib = F, p2.5.w.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p2.5.s.as) plot_sens_lod(p2.5.m.as) plot_sens_lod(p2.5.w.as)
# Strong selection. p2.5.s.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5), thin_library = T), stringsAsFactors = F)) # Moderate selection. p2.5.m.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1), thin_library = T), stringsAsFactors = F)) # Weak selection. p2.5.w.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5), thin_library = T), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "2.5%", thin_lib = T, p2.5.s.tl.as), data.frame(Selection = "Moderate", Prevalence = "2.5%", thin_lib = T, p2.5.m.tl.as), data.frame(Selection = "Weak", Prevalence = "2.5%", thin_lib = T, p2.5.w.tl.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p2.5.s.tl.as) plot_sens_lod(p2.5.m.tl.as) plot_sens_lod(p2.5.w.tl.as)
# Strong selection. p1.s.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5)), stringsAsFactors = F)) # Moderate selection. p1.m.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1)), stringsAsFactors = F)) # Weak selection. p1.w.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5)), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "1%", thin_lib = F, p1.s.as), data.frame(Selection = "Moderate", Prevalence = "1%", thin_lib = F, p1.m.as), data.frame(Selection = "Weak", Prevalence = "1%", thin_lib = F, p1.w.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p1.s.as) plot_sens_lod(p1.m.as) plot_sens_lod(p1.w.as)
# Strong selection. p1.s.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5), thin_library = T), stringsAsFactors = F)) # Moderate selection. p1.m.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1), thin_library = T), stringsAsFactors = F)) # Weak selection. p1.w.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5), thin_library = T), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "1%", thin_lib = T, p1.s.tl.as), data.frame(Selection = "Moderate", Prevalence = "1%", thin_lib = T, p1.m.tl.as), data.frame(Selection = "Weak", Prevalence = "1%", thin_lib = T, p1.w.tl.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p1.s.tl.as) plot_sens_lod(p1.m.tl.as) plot_sens_lod(p1.w.tl.as)
# Strong selection. p01.s.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5)), stringsAsFactors = F)) # Moderate selection. p01.m.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1)), stringsAsFactors = F)) # Weak selection. p01.w.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5)), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5)), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "0.1%", thin_lib = F, p01.s.as), data.frame(Selection = "Moderate", Prevalence = "0.1%", thin_lib = F, p01.m.as), data.frame(Selection = "Weak", Prevalence = "0.1%", thin_lib = F, p01.w.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p01.s.as) plot_sens_lod(p01.m.as) plot_sens_lod(p01.w.as)
# Strong selection. p01.s.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1.5), thin_library = T), stringsAsFactors = F)) # Moderate selection. p01.m.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 1), thin_library = T), stringsAsFactors = F)) # Weak selection. p01.w.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5), thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rnorm, signal_params = list(mean = gauss_mean, sd = 0.5), thin_library = T), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "0.1%", thin_lib = T, p01.s.tl.as), data.frame(Selection = "Moderate", Prevalence = "0.1%", thin_lib = T, p01.m.tl.as), data.frame(Selection = "Weak", Prevalence = "0.1%", thin_lib = T, p01.w.tl.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p01.s.tl.as) plot_sens_lod(p01.m.tl.as) plot_sens_lod(p01.w.tl.as)
pareto_params.strong <- list(location = 1.5, shape = 5) pareto_params.moderate <- list(location = 1.5, shape = 7) pareto_params.weak <- list(location = 1.5, shape = 9)
# Strong selection. p10.s.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rpareto, signal_params = pareto_params.strong), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rpareto, signal_params = pareto_params.strong), stringsAsFactors = F)) # Moderate selection. p10.m.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rpareto, signal_params = pareto_params.moderate), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rpareto, signal_params = pareto_params.moderate), stringsAsFactors = F)) # Weak selection. p10.w.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rpareto, signal_params = pareto_params.weak), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rpareto, signal_params = pareto_params.weak), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "10%", thin_lib = F, p10.s.as), data.frame(Selection = "Moderate", Prevalence = "10%", thin_lib = F, p10.m.as), data.frame(Selection = "Weak", Prevalence = "10%", thin_lib = F, p10.w.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p10.s.as) plot_sens_lod(p10.m.as) plot_sens_lod(p10.w.as)
# Strong selection. p10.s.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rpareto, signal_params = pareto_params.strong, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rpareto, signal_params = pareto_params.strong, thin_library = T), stringsAsFactors = F)) # Moderate selection. p10.m.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rpareto, signal_params = papareto_params.weak, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rpareto, signal_params = pareto_params.moderate, thin_library = T), stringsAsFactors = F)) # Weak selection. p10.w.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 1800, signal_fun = rpareto, signal_params = pareto_params.weak, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 1800, signal_fun = rpareto, signal_params = pareto_params.weak, thin_library = T), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "10%", thin_lib = T, p10.s.tl.as), data.frame(Selection = "Moderate", Prevalence = "10%", thin_lib = T, p10.m.tl.as), data.frame(Selection = "Weak", Prevalence = "10%", thin_lib = T, p10.w.tl.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p10.s.tl.as) plot_sens_lod(p10.m.tl.as) plot_sens_lod(p10.w.tl.as)
# Strong selection. p5.s.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rpareto, signal_params = pareto_params.strong), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rpareto, signal_params = pareto_params.strong), stringsAsFactors = F)) # Moderate selection. p5.m.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rpareto, signal_params = pareto_params.moderate), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rpareto, signal_params = pareto_params.moderate), stringsAsFactors = F)) # Weak selection. p5.w.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rpareto, signal_params = pareto_params.weak), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rpareto, signal_params = pareto_params.weak), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "5%", thin_lib = F, p5.s.as), data.frame(Selection = "Moderate", Prevalence = "5%", thin_lib = F, p5.m.as), data.frame(Selection = "Weak", Prevalence = "5%", thin_lib = F, p5.w.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p5.s.as) plot_sens_lod(p5.m.as) plot_sens_lod(p5.w.as)
# Strong selection. p5.s.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rpareto, signal_params = pareto_params.strong, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rpareto, signal_params = pareto_params.strong, thin_library = T), stringsAsFactors = F)) # Moderate selection. p5.m.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rpareto, signal_params = pareto_params.moderate, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rpareto, signal_params = pareto_params.moderate, thin_library = T), stringsAsFactors = F)) # Weak selection. p5.w.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 900, signal_fun = rpareto, signal_params = pareto_params.weak, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 900, signal_fun = rpareto, signal_params = pareto_params.weak, thin_library = T), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "5%", thin_lib = T, p5.s.tl.as), data.frame(Selection = "Moderate", Prevalence = "5%", thin_lib = T, p5.m.tl.as), data.frame(Selection = "Weak", Prevalence = "5%", thin_lib = T, p5.w.tl.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p5.s.tl.as) plot_sens_lod(p5.m.tl.as) plot_sens_lod(p5.w.tl.as)
# Strong selection. p2.5.s.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rpareto, signal_params = pareto_params.strong), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rpareto, signal_params = pareto_params.strong), stringsAsFactors = F)) # Moderate selection. p2.5.m.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rpareto, signal_params = pareto_params.moderate), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rpareto, signal_params = pareto_params.moderate), stringsAsFactors = F)) # Weak selection. p2.5.w.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rpareto, signal_params = pareto_params.weak), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rpareto, signal_params = pareto_params.weak), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "2.5%", thin_lib = F, p2.5.s.as), data.frame(Selection = "Moderate", Prevalence = "2.5%", thin_lib = F, p2.5.m.as), data.frame(Selection = "Weak", Prevalence = "2.5%", thin_lib = F, p2.5.w.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p2.5.s.as) plot_sens_lod(p2.5.m.as) plot_sens_lod(p2.5.w.as)
# Strong selection. p2.5.s.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rpareto, signal_params = pareto_params.strong, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rpareto, signal_params = pareto_params.strong, thin_library = T), stringsAsFactors = F)) # Moderate selection. p2.5.m.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rpareto, signal_params = pareto_params.moderate, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rpareto, signal_params = pareto_params.moderate, thin_library = T), stringsAsFactors = F)) # Weak selection. p2.5.w.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 450, signal_fun = rpareto, signal_params = pareto_params.weak, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 450, signal_fun = rpareto, signal_params = pareto_params.weak, thin_library = T), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "2.5%", thin_lib = T, p2.5.s.tl.as), data.frame(Selection = "Moderate", Prevalence = "2.5%", thin_lib = T, p2.5.m.tl.as), data.frame(Selection = "Weak", Prevalence = "2.5%", thin_lib = T, p2.5.w.tl.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p2.5.s.tl.as) plot_sens_lod(p2.5.m.tl.as) plot_sens_lod(p2.5.w.tl.as)
# Strong selection. p1.s.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rpareto, signal_params = pareto_params.strong), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rpareto, signal_params = pareto_params.strong), stringsAsFactors = F)) # Moderate selection. p1.m.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rpareto, signal_params = pareto_params.moderate), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rpareto, signal_params = pareto_params.moderate), stringsAsFactors = F)) # Weak selection. p1.w.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rpareto, signal_params = pareto_params.weak), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rpareto, signal_params = pareto_params.weak), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "1%", thin_lib = F, p1.s.as), data.frame(Selection = "Moderate", Prevalence = "1%", thin_lib = F, p1.m.as), data.frame(Selection = "Weak", Prevalence = "1%", thin_lib = F, p1.w.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p1.s.as) plot_sens_lod(p1.m.as) plot_sens_lod(p1.w.as)
# Strong selection. p1.s.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rpareto, signal_params = pareto_params.strong, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rpareto, signal_params = pareto_params.strong, thin_library = T), stringsAsFactors = F)) # Moderate selection. p1.m.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rpareto, signal_params = pareto_params.moderate, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rpareto, signal_params = pareto_params.moderate, thin_library = T), stringsAsFactors = F)) # Weak selection. p1.w.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 180, signal_fun = rpareto, signal_params = pareto_params.weak, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 180, signal_fun = rpareto, signal_params = pareto_params.weak, thin_library = T), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "1%", thin_lib = T, p1.s.tl.as), data.frame(Selection = "Moderate", Prevalence = "1%", thin_lib = T, p1.m.tl.as), data.frame(Selection = "Weak", Prevalence = "1%", thin_lib = T, p1.w.tl.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p1.s.tl.as) plot_sens_lod(p1.m.tl.as) plot_sens_lod(p1.w.tl.as)
# Strong selection. p01.s.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rpareto, signal_params = pareto_params.strong), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rpareto, signal_params = pareto_params.strong), stringsAsFactors = F)) # Moderate selection. p01.m.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rpareto, signal_params = pareto_params.moderate), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rpareto, signal_params = pareto_params.moderate), stringsAsFactors = F)) # Weak selection. p01.w.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rpareto, signal_params = pareto_params.weak), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rpareto, signal_params = pareto_params.weak), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "0.1%", thin_lib = F, p01.s.as), data.frame(Selection = "Moderate", Prevalence = "0.1%", thin_lib = F, p01.m.as), data.frame(Selection = "Weak", Prevalence = "0.1%", thin_lib = F, p01.w.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p01.s.as) plot_sens_lod(p01.m.as) plot_sens_lod(p01.w.as)
# Strong selection. p01.s.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rpareto, signal_params = pareto_params.strong, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rpareto, signal_params = pareto_params.strong, thin_library = T), stringsAsFactors = F)) # Moderate selection. p01.m.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rpareto, signal_params = pareto_params.moderate, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rpareto, signal_params = pareto_params.moderate, thin_library = T), stringsAsFactors = F)) # Weak selection. p01.w.tl.as <- rbind(data.frame(dataset = "c903", add_signal_repl(c903, num_reps = num_reps, num_genes = 18, signal_fun = rpareto, signal_params = pareto_params.weak, thin_library = T), stringsAsFactors = F), data.frame(dataset = "cFour", add_signal_repl(cFour, num_reps = num_reps, num_genes = 18, signal_fun = rpareto, signal_params = pareto_params.weak, thin_library = T), stringsAsFactors = F)) pall <- rbind(pall, data.frame(Selection = "Strong", Prevalence = "0.1%", thin_lib = T, p01.s.tl.as), data.frame(Selection = "Moderate", Prevalence = "0.1%", thin_lib = T, p01.m.tl.as), data.frame(Selection = "Weak", Prevalence = "0.1%", thin_lib = T, p01.w.tl.as)) saveRDS(pall, file="pall.rds", compress="xz") plot_sens_lod(p01.s.tl.as) plot_sens_lod(p01.m.tl.as) plot_sens_lod(p01.w.tl.as)
Relative performance taken as median of log ratio of sensitivity across all logFC.LOD
- drugZ/Mageck.
pall <- rbind(readRDS(file="../Rmd/pall.rds") %>% mutate(fc_distr = "Normal"), readRDS(file="../Rmd/pall-gamma.rds") %>% mutate(fc_distr = "Gamma"), readRDS(file="../Rmd/pall-bimod.rds") %>% dplyr::filter(row_number() < 1921) %>% mutate(fc_distr = "Normal-bimodal")) %>% mutate(replicate = rep(1:(n()/16),each=16)) rp <- pall %>% dplyr::filter(!is.na(Sensitivity)) %>% group_by(replicate, logFC.LOD) %>% summarise(fc_distr = fc_distr[1], Selection = Selection[1], Prevalence = Prevalence[1], log_ratio_sens = log(Sensitivity[Algorithm=="drugZ"]/Sensitivity[Algorithm=="Mageck"])) %>% ungroup() %>% group_by(replicate) %>% summarise(fc_distr = fc_distr[1], Selection = Selection[1], Prevalence = Prevalence[1], log_ratio_sensitivity.median = median(log_ratio_sens)) %>% ungroup() ggplot(rp, aes(Prevalence, log_ratio_sensitivity.median, color = Selection)) + geom_point(position = position_dodge(width=0.75)) + geom_boxplot(fill=NA) + geom_hline(yintercept = 0, linetype="dashed") + facet_wrap(~fc_distr) + ylim(-1,1) + ggtitle("Sensitivity Ratio: -ve Mageck better; +ve drugZ better")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.