R/immer_agree2.R

Defines functions immer_agree2

Documented in immer_agree2

## File Name: immer_agree2.R
## File Version: 0.12

###########################################
# agreement statistics for two raters
immer_agree2 <- function( y, w=rep(1,nrow(y) ),
        symmetrize=FALSE, tol=c(0,1) )
{
    CALL <- match.call()
    res <- immer_unique_patterns( dat=y, w=w )
    y <- res$y
    w <- res$w
    #***
    # symmetrize frequency table
    if ( symmetrize ){
        y <- rbind( y, y[,c(2,1) ] )
        w <- c( w/2, w/2 )
        res <- immer_unique_patterns( dat=y, w=w )
        y <- res$y
        w <- res$w
    }
    w0 <- w / sum(w)

    #*** create frequency table
    categs <- unique( c( y[,1], y[,2] ) )
    CC <- length(categs)

    agree_table <- matrix( 0, nrow=CC, ncol=CC)
    for (ii in 1:CC){
        for (jj in 1:CC){
            agree_table[ii,jj] <- sum( ( y[,1]==categs[ii] ) *
                    ( y[,2]==categs[jj] ) * w0 )
        }
    }

    rownames(agree_table) <- paste0( colnames(y)[1], "_Cat", categs)
    colnames(agree_table) <- paste0( colnames(y)[2], "_Cat", categs)

    #****
    # compute absolute agreement (with tolerance specified in vector)
    TT <- length(tol)
    agree_raw <- rep(NA,TT)
    names(agree_raw) <- paste0("tol", tol)
    for (tt in 1:TT){
        agree_raw[tt] <- sum( w0[ abs( y[,1] - y[,2] ) <=tol[tt] ]  )
    }

    #*** marginal probabilities
    marg <- matrix( 0, nrow=3, ncol=CC)
    rownames(marg) <- c( colnames(y), "Mean" )
    colnames(marg) <- paste0( "Cat", categs )
    marg[1,] <- rowSums( agree_table )
    marg[2,] <- colSums( agree_table )
    marg[3,] <- ( marg[1,] + marg[2,] ) / 2

    #*** overall agreement
    Pa <- sum( diag( agree_table ) )

    #**** chance agreement
    Pe <- c()
    # Scott's Pi
    Pe["pi"] <- sum( marg[3,]^2 )
    # Cohen's kappa
    Pe["kappa"] <- sum( marg[1,] * marg[2,] )
    # AC1 Gwet
    Pe["AC1"] <- sum( marg[3,] * ( 1 - marg[3,] ) ) / ( CC - 1 )

    #*** algorithm Aicken's alpha
    PAk <- marg[1,]
    PBk <- marg[2,]
    res0 <- agree_aicken( PAk=PAk, PBk=PBk, Pa=Pa )

    Pe["Aicken"] <- res0$Pe
    agree_stats <- ( Pa - Pe ) / ( 1 - Pe )
    agree_stats["Aicken"] <- res0$alpha
    PAH <- res0$PAH
    PBH <- res0$PBH
    # hard to classify probs
    PH <- matrix( 0, nrow=2, ncol=CC )
    colnames(PH) <- colnames(marg)
    rownames(PH) <- rownames(marg)[1:2]
    PH[1,] <- PAH
    PH[2,] <- PBH

    #*****
    agree_stats <- ( Pa - Pe ) / ( 1 - Pe )

    #-----
    # output
    res <- list( "agree_raw"=agree_raw,
            "agree_stats"=agree_stats,
            "agree_table"=agree_table,
            "marg"=marg,
            "Pe"=Pe, "Pa"=Pa,
            "alpha"=res0$alpha    , "PH"=PH,
            "nobs"=sum(w), "ncat"=CC, "tol"=tol,
            "y"=y, "w"=w,
            "CALL"=CALL
            )
    class(res) <- "immer_agree2"
    return(res)
}
#############################################################
alexanderrobitzsch/immer documentation built on Aug. 16, 2020, 10:11 p.m.