R/normal2.cw.R

Defines functions normal2.cw

## File Name: normal2.cw.R
## File Version: 0.175


#** approximation of the bivariate normal integral
#** by the method of Cox and Wermuth (1991)
normal2.cw <- function( a, b, rho )
{
    # (X,Y) ~ N_2(0, rho)
    #   P( X > a1, Y > b1, rho )
    #=P( -X < - a1, -Y < -b1, rho )
    if ( any( rho < 0 )){
        stop('only positive correlations are allowed!')
    }
    a11 <- a1 <- - a
    b1 <- - b
    # APPROX. (ii)
    ind2 <- which( a1 < 0 & b1 < 0 )
    if ( length(ind2) > 0 ){
        a1[ ind2 ] <- - a1[ind2]
        b1[ ind2 ] <- - b1[ind2]
    }
    # APPROX. (i):
    # a > 0 and b > 0=> a > b
    ind <- which( a1 < b1 )
    t1 <- b1
    if ( length(ind) > 0 ){
        b1[ ind ] <- a1[ind]
        a1[ind] <- t1[ind]
    }
    t1 <- stats::pnorm(-a1)
    mu <- sirt_dnorm(a1) / stats::pnorm(-a1)
    xi <- ( rho * mu - b1 ) / sqrt( 1 - rho^2 )
    # see Hong (1999)
    # sig2 <- 1 + mu - mu^2 #=> formula in Cox & Wermuth (1991)
    sig2 <- 1 + a1*mu - mu^2
    #  Formula (3)
    # t1 * pnorm( xi )
    # Formula (4): correction in Hong (1999)
    prob1 <- t1*( stats::pnorm(xi) - 1/2 * rho^2/( 1 - rho^2 )*xi*sirt_dnorm(xi)*sig2  )
    # adjust formula in case of APPROX. (ii)
    if ( length(ind2) > 0 ){
        # CW. Formula in (ii), p. 264
        prob1[ind2] <- 1 - stats::pnorm( -a1[ind2] ) -
                                stats::pnorm( -b1[ind2] ) + prob1[ind2]
    }
#    # negative correlations
#    if ( length(ind.neg) > 0 ){
#        prob1[ind.neg] <- pnorm( - a11[ind.neg] ) - prob1[ ind.neg]
#    }
    return(prob1)
}
alexanderrobitzsch/sirt documentation built on Sept. 8, 2024, 2:45 a.m.