The goal of proteomicsQC is to …
library(devtools)
#> Loading required package: usethis
You can install the released version of proteomicsQC from github with:
#install_github(repo = "alzel/proteomicsQC")
library(proteomicsQC)
library(tidyverse)
#> ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
#> ✓ ggplot2 3.3.5 ✓ purrr 0.3.4
#> ✓ tibble 3.1.3 ✓ dplyr 1.0.7
#> ✓ tidyr 1.1.3 ✓ stringr 1.4.0
#> ✓ readr 2.0.0 ✓ forcats 0.5.1
#> ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
#> x dplyr::filter() masks stats::filter()
#> x dplyr::lag() masks stats::lag()
library(patchwork)
This is a basic example which shows you how to solve a common problem:
#load diann report
load("./data/diann_report.rda")
diann_report
#> # A tibble: 123,454 × 43
#> File.Name Run Protein.Group Protein.Ids Protein.Names Genes PG.Quantity
#> <chr> <chr> <chr> <chr> <chr> <chr> <dbl>
#> 1 "D:\\qtof1\… Batch… P04114 P04114 APOB_HUMAN APOB 11879
#> 2 "D:\\qtof1\… Batch… P04114 P04114 APOB_HUMAN APOB 51152.
#> 3 "D:\\qtof1\… Batch… P04114 P04114 APOB_HUMAN APOB 12350.
#> 4 "D:\\qtof1\… Batch… P04114 P04114 APOB_HUMAN APOB 11897.
#> 5 "D:\\qtof1\… Batch… P04114 P04114 APOB_HUMAN APOB 16578.
#> 6 "D:\\qtof1\… Batch… P04114 P04114 APOB_HUMAN APOB 10623.
#> 7 "D:\\qtof1\… Batch… P04114 P04114 APOB_HUMAN APOB 43581.
#> 8 "D:\\qtof1\… Batch… P04114 P04114 APOB_HUMAN APOB 10335.
#> 9 "D:\\qtof1\… Batch… P04114 P04114 APOB_HUMAN APOB 16549.
#> 10 "D:\\qtof1\… Batch… P04114 P04114 APOB_HUMAN APOB 38016.
#> # … with 123,444 more rows, and 36 more variables: PG.Normalised <dbl>,
#> # Genes.Quantity <dbl>, Genes.Normalised <dbl>, Genes.MaxLFQ <dbl>,
#> # Genes.MaxLFQ.Unique <dbl>, Modified.Sequence <chr>,
#> # Stripped.Sequence <chr>, Precursor.Id <chr>, Precursor.Charge <int>,
#> # Q.Value <dbl>, Protein.Q.Value <dbl>, PG.Q.Value <dbl>, GG.Q.Value <dbl>,
#> # Proteotypic <int>, Precursor.Quantity <dbl>, Precursor.Normalised <dbl>,
#> # Label.Ratio <int>, Quantity.Quality <dbl>, RT <dbl>, RT.Start <dbl>, …
What is special about using README.Rmd
instead of just README.md
?
You can include R chunks like so:
metadata <- create_metadata(diann_report,
INTO = c("Batch", "sample_id", "run_order", "plate_pos", "well"),
file_pattern = "(.*?)_(.*?)_([0-9]+)_([0-9]+)_([A-Za-z0-9]+)\\.wiff\\.dia$")
plotExperiment(report = diann_report, metadata = metadata, subtitle = "Test")
#> Joining, by = c("File.Name", "Batch", "sample_id", "run_order", "plate_pos", "well", "row", "column")
#> Joining, by = c("File.Name", "Batch", "sample_id", "run_order", "plate_pos", "well", "row", "column")
#> Warning: Removed 1 rows containing non-finite values (stat_boxplot).
#> Warning: Removed 1 rows containing non-finite values (stat_boxplot).
Routine to calculate Z-score over various summaries
diann_report %>%
filter(!grepl(pattern = ".*?BLANK.*?", perl = T, ignore.case = T, x = File.Name)) %>%
countStats() -> report_stats
diann_report %>%
countStats() -> report_stats
Plots outliers statistics
diann_report %>%
countStats() -> report_stats
plotStats(report_stats, Z_THR = 3, stats = c("Zmod_n", "Z_TIC", "Zmod_TIC")) -> plots
plots[[1]]/plots[[2]]
You’ll still need to render README.Rmd
regularly, to keep README.md
up-to-date. devtools::build_readme()
is handy for this. You could also
use GitHub Actions to re-render README.Rmd
every time you push. An
example workflow can be found here:
https://github.com/r-lib/actions/tree/master/examples.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.