# ------------------------------------------
# Set working directory and load libraries
# ------------------------------------------
if (interactive()) {cur.dir <- dirname(parent.frame(2)$ofile); setwd(cur.dir)}
R.utils::sourceDirectory("../../lib", modifiedOnly = FALSE)
suppressPackageStartupMessages(library(BPRMeth))
suppressPackageStartupMessages(library(data.table))
suppressPackageStartupMessages(library(ROCR))
set.seed(123)
melissa_var_analysis <- function(opts, sim){
# Initialize lists
melissa_prof = melissa_mean = eval_perf <- vector("list", length = length(opts$cluster_var))
i <- 1
# Iterate
for (m in opts$cluster_var) {
# Load synthetic data
io <- list(data_file = paste0("high_noise_encode_data_", m, "_", sim, ".rds"),
data_dir = "../../local-data/melissa/synthetic/imputation/dissimilarity/raw/data-sims/")
obj <- readRDS(paste0(io$data_dir, io$data_file))
# Partition to training and test sets
dt <- partition_dataset(X = obj$synth_data$X, region_train_prcg = opts$region_train_prcg,
cpg_train_prcg = opts$cpg_train_prcg, is_synth = TRUE)
# Using methylation profiles
prof_obj <- melissa_vb(X = dt$train, K = opts$K, basis = opts$basis_prof,
delta_0 = opts$delta_0, alpha_0 = opts$alpha_0, beta_0 = opts$beta_0,
vb_max_iter = opts$vb_max_iter, epsilon_conv = opts$epsilon_conv,
is_kmeans = opts$is_kmeans, vb_init_nstart = opts$vb_init_nstart,
vb_init_max_iter = opts$vb_init_max_iter, is_parallel = opts$is_parallel,
no_cores = opts$no_cores, is_verbose = FALSE)
mean_obj <- melissa_vb(X = dt$train, K = opts$K, basis = opts$basis_mean,
delta_0 = opts$delta_0, alpha_0 = opts$alpha_0, beta_0 = opts$beta_0,
vb_max_iter = opts$vb_max_iter, epsilon_conv = opts$epsilon_conv,
is_kmeans = opts$is_kmeans, vb_init_nstart = opts$vb_init_nstart,
vb_init_max_iter = opts$vb_init_max_iter, is_parallel = opts$is_parallel,
no_cores = opts$no_cores, is_verbose = FALSE)
melissa_prof[[i]] <- prof_obj
melissa_mean[[i]] <- mean_obj
##----------------------------------------------------------------------
#message("Evaluating model performance...")
##----------------------------------------------------------------------
# Using methylation profiles
eval_prof <- eval_performance(obj = prof_obj, test = dt$test)
# Using methylation rate
eval_mean <- eval_performance(obj = mean_obj, test = dt$test)
eval_perf[[i]] <- list(eval_prof = eval_prof, eval_mean = eval_mean)
##----------------------------------------------------------------------
message("Computing AUC...")
##----------------------------------------------------------------------
pred_prof <- prediction(eval_prof$pred_obs, eval_prof$act_obs)
auc_prof <- performance(pred_prof, "auc")
auc_prof <- unlist(auc_prof@y.values)
message(auc_prof)
pred_mean <- prediction(eval_mean$pred_obs, eval_mean$act_obs)
auc_mean <- performance(pred_mean, "auc")
auc_mean <- unlist(auc_mean@y.values)
message(auc_mean)
i <- i + 1 # Increase counter
}
obj <- list(melissa_prof = melissa_prof, melissa_rate = melissa_mean,
eval_perf = eval_perf, opts = opts)
return(obj)
}
##------------------------
# Load synthetic data
##------------------------
io <- list(data_file = paste0("raw/data-sims/high_noise_encode_data_0.1_1.rds"),
out_dir = "../../local-data/melissa/synthetic/imputation/dissimilarity/")
obj <- readRDS(paste0(io$out_dir, io$data_file))
opts <- obj$opts # Get options
opts$delta_0 <- rep(3, opts$K) # Dirichlet prior
opts$alpha_0 <- 0.5 # Gamma prior
opts$beta_0 <- 10 # Gamma prior
opts$data_train_prcg <- 0.1 # % of data to keep fully for training
opts$region_train_prcg <- 1 # % of regions kept for training
opts$cpg_train_prcg <- 0.4 # % of CpGs kept for training in each region
opts$is_kmeans <- TRUE # Use K-means for initialization
opts$vb_max_iter <- 300 # Maximum VB iterations
opts$epsilon_conv <- 1e-4 # Convergence threshold for VB
opts$vb_init_nstart <- 10 # Mini VB restarts
opts$vb_init_max_iter <- 20 # Mini VB iteratiions
opts$is_parallel <- TRUE # Use parallelized version
opts$no_cores <- 4 # Number of cores
rm(obj)
# Parallel analysis
no_cores_out <- BPRMeth:::.parallel_cores(no_cores = opts$total_sims,
is_parallel = TRUE)
print(date())
obj <- parallel::mclapply(X = 1:opts$total_sims, FUN = function(sim)
melissa_var_analysis(opts = opts, sim = sim), mc.cores = no_cores_out)
print(date())
##----------------------------------------------------------------------
message("Storing results...")
##----------------------------------------------------------------------
saveRDS(obj, file = paste0(io$out_dir, "high_noise_encode_melissa_K", opts$K,
"_rbf", opts$basis_prof$M,
"_dataTrain", opts$data_train_prcg,
"_regionTrain", opts$region_train_prcg,
"_cpgTrain", opts$cpg_train_prcg, ".rds") )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.