#' Plot neural network architecture
#'
#' \code{plotnn} It is designed for an inspection of the weights for objects of
#' class \code{interpretnn}.
#'
#'
#' @param x an object of class \code{interpretnnet}
#' @param rep repetition of the neural network. If rep="best", the repetition
#' with the smallest error will be plotted. If not stated all repetitions will
#' be plotted, each in a separate window.
#' @param x.entry x-coordinate of the entry layer. Depends on the arrow.length
#' in default.
#' @param x.out x-coordinate of the output layer.
#' @param radius radius of the neurons.
#' @param arrow.length length of the entry and out arrows.
#' @param intercept a logical value indicating whether to plot the intercept.
#' @param intercept.factor x-position factor of the intercept. The closer the
#' factor is to 0, the closer the intercept is to its left neuron.
#' @param information a logical value indicating whether to add the error and
#' steps to the plot.
#' @param information.pos y-position of the information.
#' @param col.entry.synapse color of the synapses leading to the input neurons.
#' @param col.entry color of the input neurons.
#' @param col.hidden color of the neurons in the hidden layer.
#' @param col.hidden.synapse color of the weighted synapses.
#' @param col.out color of the output neurons.
#' @param col.out.synapse color of the synapses leading away from the output
#' neurons.
#' @param col.intercept color of the intercept.
#' @param col.sig.synapse color of the significant synapses.
#' @param col.insig.synapse color of the insignificant synapses.
#' @param col.sig.node color of the significant input nodes.
#' @param col.insig.node color of the insignificant input nodes.
#' @param fontsize fontsize of the text.
#' @param dimension size of the plot in inches.
#' @param show.weights a logical value indicating whether to print the
#' calculated weights above the synapses.
#' @param file a character string naming the plot to write to. If not stated,
#' the plot will not be saved.
#' @param rounding number of decimal places to round values.
#' @param alpha significane level.
#' @param lambda ridge penalty.
#' @param \dots arguments to be passed to methods, such as graphical parameters
#' (see \code{\link{par}}).
#'
#' @return plot of weights and their significance
#' @export
plotnn <-
function (x, rep = NULL, x.entry = NULL, x.out = NULL, radius = 0.15,
arrow.length = 0.2, intercept = FALSE, intercept.factor = 0.4,
information = FALSE, information.pos = 0.1, col.entry.synapse = "black",
col.entry = "black", col.hidden = "black", col.hidden.synapse = "black",
col.out = "black", col.out.synapse = "black", col.intercept = "black",
col.sig.synapse = "black", col.insig.synapse = "lightgrey",
col.sig.node = "black", col.insig.node = "lightgrey",
fontsize = 12, dimension = 6, show.weights = FALSE, file = NULL,
rounding = 3, alpha = 0.05, lambda = 0,
...)
{
net <- x
p <- net$n_inputs
q <- net$n_nodes
net$wts <- list(list(
matrix(net$weights[1:((p + 1) * q)],
nrow = p + 1, ncol = q),
matrix(net$weights[((p + 1) * q + 1):length(net$weights)],
nrow = q + 1, ncol = 1)))
p_values_w <- net$wald_sp$p_value
sig_w <- p_values_w < alpha
p_values_n <- net$wald$p_value
sig_n <- p_values_n < alpha
sig_w <- ifelse(sig_w, col.sig.synapse, col.insig.synapse)
synapse.col <- list(
matrix(sig_w[1:((p + 1) * q)],
nrow = p + 1, ncol = q),
matrix(sig_w[((p + 1) * q + 1):length(sig_w)],
nrow = q + 1, ncol = 1))
sig_n <- ifelse(sig_n, col.sig.node, col.insig.node)
if (is.null(net$weights))
stop("weights were not calculated")
if (!is.null(file) && !is.character(file))
stop("'file' must be a string")
if (is.null(rep)) {
for (i in 1:length(net$wts)) {
if (!is.null(file))
file.rep <- paste(file, ".", i, sep = "")
else file.rep <- NULL
# grDevices::dev.new()
plotnn(net, rep = i, x.entry, x.out, radius, arrow.length,
intercept, intercept.factor, information, information.pos,
col.entry.synapse, col.entry, col.hidden, col.hidden.synapse,
col.out, col.out.synapse, col.intercept, col.sig.synapse,
col.insig.synapse, col.sig.node, col.insig.node, fontsize,
dimension, show.weights, file.rep, rounding = rounding,
alpha = alpha, lambda = lambda, ...)
}
}
else {
if (is.character(file) && file.exists(file))
stop(sprintf("%s already exists", sQuote(file)))
# result.matrix <- t(net$result.matrix)
# if (rep == "best")
# rep <- as.integer(which.min(result.matrix[, "error"]))
if (rep > length(net$wts))
stop("'rep' does not exist")
weights <- net$wts[[rep]]
if (is.null(x.entry))
x.entry <- 0.5 - (arrow.length/2) * length(weights)
if (is.null(x.out))
x.out <- 0.5 + (arrow.length/2) * length(weights)
width <- max(x.out - x.entry + 0.2, 0.8) * 8
radius <- radius/dimension
entry.label <- colnames(net$X)
out.label <- colnames(net$y)
neuron.count <- array(0, length(weights) + 1)
neuron.count[1] <- nrow(weights[[1]]) - 1
neuron.count[2] <- ncol(weights[[1]])
x.position <- array(0, length(weights) + 1)
x.position[1] <- x.entry
x.position[length(weights) + 1] <- x.out
if (length(weights) > 1)
for (i in 2:length(weights)) {
neuron.count[i + 1] <- ncol(weights[[i]])
x.position[i] <- x.entry + (i - 1) * (x.out -
x.entry)/length(weights)
}
y.step <- 1/(neuron.count + 1)
y.position <- array(0, length(weights) + 1)
y.intercept <- 1 - 2 * radius
information.pos <- min(min(y.step) - 0.1, 0.2)
if (length(entry.label) != neuron.count[1]) {
if (length(entry.label) < neuron.count[1]) {
tmp <- NULL
for (i in 1:(neuron.count[1] - length(entry.label))) {
tmp <- c(tmp, "no name")
}
entry.label <- c(entry.label, tmp)
}
}
if (length(out.label) != neuron.count[length(neuron.count)]) {
if (length(out.label) < neuron.count[length(neuron.count)]) {
tmp <- NULL
for (i in 1:(neuron.count[length(neuron.count)] -
length(out.label))) {
tmp <- c(tmp, "no name")
}
out.label <- c(out.label, tmp)
}
}
grid::grid.newpage()
for (k in 1:length(weights)) {
for (i in 1:neuron.count[k]) {
y.position[k] <- y.position[k] + y.step[k]
y.tmp <- 0
for (j in 1:neuron.count[k + 1]) {
y.tmp <- y.tmp + y.step[k + 1]
result <- calculate.delta(c(x.position[k],
x.position[k + 1]), c(y.position[k], y.tmp),
radius)
x <- c(x.position[k], x.position[k + 1])
y <- c(y.position[k], y.tmp)
grid::grid.lines(x = x,
y = y,
# arrow = grid::arrow(length = grid::unit(0.15, "cm"),
# type = "closed"),
gp = grid::gpar(fill =
synapse.col[[k]][
neuron.count[k] - i + 2,
neuron.count[k + 1] - j + 1],
col = synapse.col[[k]][
neuron.count[k] - i + 2,
neuron.count[k + 1] - j + 1], ...))
if (show.weights)
draw.text(label = round(weights[[k]][neuron.count[k] -
i + 2, neuron.count[k + 1] - j + 1],
digits = rounding),
x = c(x.position[k],
x.position[k + 1]),
y = c(y.position[k],
y.tmp),
xy.null = 1.25 * result,
color = col.hidden.synapse,
fontsize = fontsize - 2, ...)
}
if (k == 1) {
# grid::grid.lines(x = c((x.position[1] - arrow.length),
# x.position[1] - radius), y = y.position[k],
# arrow = grid::arrow(length = grid::unit(0.15, "cm"),
# type = "closed"), gp = grid::gpar(fill = col.entry.synapse,
# col = col.entry.synapse, ...))
draw.text(label = entry.label[(neuron.count[1] +
1) - i],
x = c((x.position - radius), x.position[1] - radius),
y = c(y.position[k]- 0.5 * radius ,
y.position[k]- 0.5 * radius),
xy.null = c(0, 0),
color = col.entry.synapse,
alignment = c("right", "bottom"),
fontsize = fontsize, ...)
grid::grid.circle(x = x.position[k], y = y.position[k],
r = radius, gp = grid::gpar(fill = "white", col = rev(sig_n)[i],
...))
# grid::grid.text(paste0("X", i), x = x.position[k], y = y.position[k],
# gp = grid::gpar(col = col.entry.synapse,
# fontsize = fontsize - 2, ...))
}
else {
grid::grid.circle(x = x.position[k], y = y.position[k],
r = radius, gp = grid::gpar(fill = "white", col = col.hidden,
...))
}
}
}
out <- length(neuron.count)
for (i in 1:neuron.count[out]) {
y.position[out] <- y.position[out] + y.step[out]
# grid::grid.lines(x = c(x.position[out] + radius,
# x.position[out] + arrow.length),
# y = y.position[out],
# arrow = grid::arrow(length = grid::unit(0.15, "cm"),
# type = "closed"),
# gp = grid::gpar(fill = col.out.synapse,
# col = col.out.synapse, ...))
draw.text(label = out.label[(neuron.count[out] +
1) - i],
x = c((x.position[out] + radius), x.position[out] + arrow.length),
y = c(y.position[out] - 0.5 * radius, y.position[out] - 0.5 * radius),
xy.null = c(0, 0),
color = col.out.synapse,
fontsize = fontsize,
...)
grid::grid.circle(x = x.position[out], y = y.position[out],
r = radius, gp = grid::gpar(fill = "white", col = col.out,
...))
}
if (intercept) {
intercept.labels <- c("intercept", "")
for (k in 1:length(weights)) {
y.tmp <- 0
x.intercept <- (x.position[k + 1] - x.position[k]) *
intercept.factor + x.position[k]
for (i in 1:neuron.count[k + 1]) {
y.tmp <- y.tmp + y.step[k + 1]
result <- calculate.delta(c(x.intercept, x.position[k +
1]), c(y.intercept, y.tmp), radius)
x <- c(x.intercept, x.position[k + 1])
y <- c(y.intercept, y.tmp + result[2])
grid::grid.lines(x = x,
y = y,
# arrow = grid::arrow(length = grid::unit(0.15, "cm"),
# type = "closed"),
gp = grid::gpar(fill = synapse.col[[k]][1,
neuron.count[k + 1] - i + 1],
col = synapse.col[[k]][1,
neuron.count[k + 1] - i + 1], ...))
xy.null <- cbind(x.position[k + 1] - x.intercept -
2 * result[1], -(y.tmp - y.intercept + 2 *
result[2]))
if (show.weights)
draw.text(label = round(weights[[k + 1]][i, ],
digits = rounding),
x = c(x.intercept, x.position[k + 1]),
y = c(y.intercept, y.tmp),
xy.null = xy.null,
color = col.intercept,
alignment = c("right", "bottom"),
fontsize = fontsize - 2,
...)
}
grid::grid.circle(x = x.intercept, y = y.intercept,
r = radius, gp = grid::gpar(fill = "white", col = col.intercept,
...))
draw.text(label = intercept.labels[k],
x = c((x.intercept - radius), x.position[k + 1]),
y = c(y.intercept, y.intercept),
xy.null = c(0, 0),
color = col.intercept,
fontsize = fontsize,
alignment = c("right", "bottom"),
...)
}
}
if (information)
grid::grid.text(paste("RSS: ", round(net$val, rounding),
" BIC: ", round(net$BIC, rounding), sep = ""),
x = 0.5, y = information.pos,
just = "bottom", gp = grid::gpar(fontsize = fontsize +
2, ...))
if (!is.null(file)) {
weight.plot <- grDevices::recordPlot()
save(weight.plot, file = file)
}
}
}
calculate.delta <-
function (x, y, r)
{
delta.x <- x[2] - x[1]
delta.y <- y[2] - y[1]
x.null <- r/sqrt(delta.x^2 + delta.y^2) * delta.x
if (y[1] < y[2])
y.null <- -sqrt(r^2 - x.null^2)
else if (y[1] > y[2])
y.null <- sqrt(r^2 - x.null^2)
else y.null <- 0
c(x.null, y.null)
}
draw.text <-
function (label, x, y, xy.null = c(0, 0), color, alignment = c("left",
"bottom"), ...)
{
x.label <- x[1] + xy.null[1]
y.label <- y[1] - xy.null[2]
x.delta <- x[2] - x[1]
y.delta <- y[2] - y[1]
angle = atan(y.delta/x.delta) * (180/pi)
if (angle < 0)
angle <- angle + 0
else if (angle > 0)
angle <- angle - 0
if (is.numeric(label))
label <- round(label, 5)
vp <- grid::viewport(x = x.label, y = y.label, width = 0, height = ,
angle = angle, name = "vp1", just = alignment)
grid::grid.text(label, x = 0, y = grid::unit(0.75, "mm"), just = alignment,
gp = grid::gpar(col = color, ...), vp = vp)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.