#' Figure S12
#'
#' This function allows you generate figure S12 - E2 response of gene sets.
#'
#' @keywords RNAseq ZMIZ1 GSEA
#' @examples figureS12_E2_gene_set_volcano()
#' @import DESeq2
#' @import vulcan
#' @import EnhancedVolcano
#' @export
figureS12_E2_gene_set_volcano <- function() {
result_list <- list()
for (cells in c("MCF7")) {
for (time in c("24h")) {
resname <- paste0(cells, "_", time)
message(resname)
subsamples <- annotationTable$Sample[annotationTable$Cells ==
cells & annotationTable$Treatment_Duration ==
time & annotationTable$Condition == "siCTRL"]
subraw <- rawcounts[, subsamples]
subannot <- annotationTable[annotationTable$Sample %in%
subsamples, c("Cells", "Condition", "Treatment")]
rownames(subannot) <- annotationTable$Sample[annotationTable$Sample %in%
subsamples]
subannot <- subannot[subsamples, ]
dds <- DESeqDataSetFromMatrix(countData = subraw,
colData = subannot, design = ~Treatment)
dds <- dds[rowSums(counts(dds)) > 1, ]
dds$Condition <- relevel(dds$Treatment, ref = "EtOH")
dea <- DESeq(dds, parallel = TRUE)
res <- results(dea, contrast = c("Treatment", "Oestrogen",
"EtOH"))
resannot <- cbind(rownames(res), eg2sym(rownames(res)))
annotations <- annotategene(rownames(res))
resannot <- cbind(as.matrix(resannot), as.matrix(annotations),
as.matrix(res))
colnames(resannot)[1:3] <- c("ENTREZID", "SYMBOL",
"NAME")
resannot <- as.data.frame(resannot)
resannot$log2FoldChange <- as.numeric(as.character(resannot$log2FoldChange))
resannot$stat <- as.numeric(as.character(resannot$stat))
resannot$pvalue <- as.numeric(as.character(resannot$pvalue))
resannot$padj <- as.numeric(as.character(resannot$padj))
resannot <- resannot[order(resannot$pvalue), ]
result_list[[resname]] <- resannot
rm(dea, resannot, res)
}
}
williams <- msigdb[["c2_cgp;_;WILLIAMS_ESR1_TARGETS_UP"]]
stein <- msigdb[["c2_cgp;_;STEIN_ESR1_TARGETS"]]
bhat <- msigdb[["c2_cgp;_;BHAT_ESR1_TARGETS_NOT_VIA_AKT1_UP"]]
go_cc <- msigdb[["c5_bp;_;GO_CELL_CYCLE"]]
kegg_cell_cycle <- msigdb[["c2_cp;_;KEGG_CELL_CYCLE"]]
react_cc <- msigdb[["c2_cpreactome;_;REACTOME_CELL_CYCLE"]]
overlapped_reactEG<-react_cc[react_cc %in% c(bhat, williams, stein)]
resMCF7reactEG<-result_list$MCF7_24h[overlapped_reactEG,]
overlapped_goEG<-go_cc[go_cc %in% c(bhat, williams, stein)]
resMCF7goEG<-result_list$MCF7_24h[overlapped_goEG,]
overlapped_keggEG<-kegg_cell_cycle[kegg_cell_cycle %in% c(bhat, williams, stein)]
resMCF7keggEG<-result_list$MCF7_24h[overlapped_keggEG,]
EnhancedVolcano(resMCF7reactEG,
lab = resMCF7reactEG$SYMBOL,
x = 'log2FoldChange',
y = 'padj',
title = 'Reactome / ER Cell Cycle Gene set',
drawConnectors = TRUE,
pCutoff = 0.05,
subtitle = 'MCF7 cells, 24 hours Estrogen treatment vs EtOH control',
selectLab = c('E2F2','FEN1','MCM2','MCM4','MCM6', 'PCNA', 'POLE2', 'MCM10', 'RFC4',
'SKP2','CCNA2','CCNE2', 'CDC20','CDC25A','CDC6'))
EnhancedVolcano(resMCF7goEG,
lab = resMCF7goEG$SYMBOL,
x = 'log2FoldChange',
y = 'padj',
pCutoff = 0.05,
title = 'GO / ER Cell Cycle Gene set',
subtitle = 'MCF7 cells, 24 hours Estrogen treatment vs EtOH control',
drawConnectors = TRUE,
selectLab = c('E2F2','FEN1','MCM2','MCM6', 'PCNA', 'POLE2', 'MCM10', 'RFC4',
'SKP2','RRM1', 'CCNA2','CCNE2', 'CDC20','CDC25A','CDC6', 'E2F6', 'CENPU'))
EnhancedVolcano(resMCF7keggEG,
lab = resMCF7keggEG$SYMBOL,
x = 'log2FoldChange',
y = 'padj',
pCutoff = 0.05,
drawConnectors = TRUE,
title = 'Kegg / ER Cell Cycle Gene set',
subtitle = 'MCF7 cells, 24 hours Estrogen treatment vs EtOH control')
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.