models: Valid models in INLA

Description Usage Value Examples

Description

This page describe the models implemented in inla, divided into sections: latent, group, mix, link, predictor, hazard, likelihood, prior, wrapper .

Usage

1

Value

Valid sections are: latent, group, mix, link, predictor, hazard, likelihood, prior, wrapper

Section ‘latent’.

Valid models in this section are:

Model ‘linear’.

Number of hyperparmeters are 0.

Model ‘iid’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

pdf =

‘indep’

Model ‘mec’.

Number of hyperparmeters are 4.

Hyperparameter ‘theta1’
name =

‘beta’

short.name =

‘b’

prior =

‘gaussian’

param =

‘1 0.001’

initial =

‘1’

fixed =

‘FALSE’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta2’
name =

‘prec.u’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 1e-04’

initial =

‘9.21034037197618’

fixed =

‘TRUE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta3’
name =

‘mean.x’

short.name =

‘mu.x’

prior =

‘gaussian’

param =

‘0 1e-04’

initial =

‘0’

fixed =

‘TRUE’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta4’
name =

‘prec.x’

short.name =

‘prec.x’

prior =

‘loggamma’

param =

‘1 10000’

initial =

‘-9.21034037197618’

fixed =

‘TRUE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

status =

‘experimental’

pdf =

‘mec’

Model ‘meb’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘beta’

short.name =

‘b’

prior =

‘gaussian’

param =

‘1 0.001’

initial =

‘1’

fixed =

‘FALSE’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta2’
name =

‘prec.u’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 1e-04’

initial =

‘6.90775527898214’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

status =

‘experimental’

pdf =

‘meb’

Model ‘rgeneric’.

Number of hyperparmeters are 0.

Model ‘rw1’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
constr =

‘TRUE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

pdf =

‘rw1’

Model ‘rw2’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
constr =

‘TRUE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

pdf =

‘rw2’

Model ‘crw2’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
constr =

‘TRUE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘2’

aug.constr =

‘1’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

pdf =

‘crw2’

Model ‘seasonal’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

pdf =

‘seasonal’

Model ‘besag’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
constr =

‘TRUE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘besag’

Model ‘besag2’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘scaling parameter’

short.name =

‘a’

prior =

‘loggamma’

param =

‘10 10’

initial =

‘0’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘1 2’

n.div.by =

‘2’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘besag2’

Model ‘bym’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘log unstructured precision’

short.name =

‘prec.unstruct’

prior =

‘loggamma’

param =

‘1 5e-04’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘log spatial precision’

short.name =

‘prec.spatial’

prior =

‘loggamma’

param =

‘1 5e-04’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
constr =

‘TRUE’

nrow.ncol =

‘FALSE’

augmented =

‘TRUE’

aug.factor =

‘2’

aug.constr =

‘2’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘bym’

Model ‘bym2’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘log precision’

short.name =

‘prec’

prior =

‘pc.prec’

param =

‘1 0.01’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘logit phi’

short.name =

‘phi’

prior =

‘pc’

param =

‘0.5 -1’

initial =

‘-3’

fixed =

‘FALSE’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
constr =

‘TRUE’

nrow.ncol =

‘FALSE’

augmented =

‘TRUE’

aug.factor =

‘2’

aug.constr =

‘2’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

status =

‘experimental’

pdf =

‘bym2’

Model ‘besagproper’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-04’

initial =

‘2’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘log diagonal’

short.name =

‘diag’

prior =

‘loggamma’

param =

‘1 1’

initial =

‘1’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

status =

‘experimental’

pdf =

‘besagproper’

Model ‘besagproper2’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-04’

initial =

‘2’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘logit lambda’

short.name =

‘lambda’

prior =

‘gaussian’

param =

‘0 0.45’

initial =

‘3’

fixed =

‘FALSE’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

status =

‘experimental’

pdf =

‘besagproper2’

Model ‘ar1’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘logit lag one correlation’

short.name =

‘rho’

prior =

‘normal’

param =

‘0 0.15’

initial =

‘2’

fixed =

‘FALSE’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

pdf =

‘ar1’

Model ‘ar’.

Number of hyperparmeters are 11.

Hyperparameter ‘theta1’
name =

‘log precision’

short.name =

‘prec’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘pc.prec’

param =

‘1 0.01’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘pacf1’

short.name =

‘pacf1’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘pc.ar’

param =

‘1’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta3’
name =

‘pacf2’

short.name =

‘pacf2’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta4’
name =

‘pacf3’

short.name =

‘pacf3’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta5’
name =

‘pacf4’

short.name =

‘pacf4’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta6’
name =

‘pacf5’

short.name =

‘pacf5’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta7’
name =

‘pacf6’

short.name =

‘pacf6’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta8’
name =

‘pacf7’

short.name =

‘pacf7’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta9’
name =

‘pacf8’

short.name =

‘pacf8’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta10’
name =

‘pacf9’

short.name =

‘pacf9’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta11’
name =

‘pacf10’

short.name =

‘pacf10’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

status =

‘experimental’

pdf =

‘ar’

Model ‘ou’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘log phi’

short.name =

‘phi’

prior =

‘normal’

param =

‘0 0.2’

initial =

‘-1’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

pdf =

‘ou’

Model ‘generic’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘generic0’

Model ‘generic0’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘generic0’

Model ‘generic1’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘beta’

short.name =

‘beta’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘0 0.1’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘generic1’

Model ‘generic2’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘log precision cmatrix’

short.name =

‘prec’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘log precision random’

short.name =

‘prec.random’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 0.001’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘2’

aug.constr =

‘2’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘generic2’

Model ‘generic3’.

Number of hyperparmeters are 11.

Hyperparameter ‘theta1’
name =

‘log precision1’

short.name =

‘prec1’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘log precision2’

short.name =

‘prec2’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta3’
name =

‘log precision3’

short.name =

‘prec3’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta4’
name =

‘log precision4’

short.name =

‘prec4’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta5’
name =

‘log precision5’

short.name =

‘prec5’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta6’
name =

‘log precision6’

short.name =

‘prec6’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta7’
name =

‘log precision7’

short.name =

‘prec7’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta8’
name =

‘log precision8’

short.name =

‘prec8’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta9’
name =

‘log precision9’

short.name =

‘prec9’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta10’
name =

‘log precision10’

short.name =

‘prec10’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta11’
name =

‘log precision common’

short.name =

‘prec.common’

initial =

‘0’

fixed =

‘TRUE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

status =

‘experimental’

pdf =

‘generic3’

Model ‘spde’.

Number of hyperparmeters are 4.

Hyperparameter ‘theta1’
name =

‘theta.T’

short.name =

‘T’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta2’
name =

‘theta.K’

short.name =

‘K’

initial =

‘-2’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta3’
name =

‘theta.KT’

short.name =

‘KT’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta4’
name =

‘theta.OC’

short.name =

‘OC’

initial =

‘-20’

fixed =

‘TRUE’

prior =

‘normal’

param =

‘0 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘spde’

Model ‘spde2’.

Number of hyperparmeters are 100.

Hyperparameter ‘theta1’
name =

‘theta1’

short.name =

‘t1’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘mvnorm’

param =

‘1 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta2’
name =

‘theta2’

short.name =

‘t2’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta3’
name =

‘theta3’

short.name =

‘t3’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta4’
name =

‘theta4’

short.name =

‘t4’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta5’
name =

‘theta5’

short.name =

‘t5’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta6’
name =

‘theta6’

short.name =

‘t6’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta7’
name =

‘theta7’

short.name =

‘t7’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta8’
name =

‘theta8’

short.name =

‘t8’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta9’
name =

‘theta9’

short.name =

‘t9’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta10’
name =

‘theta10’

short.name =

‘t10’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta11’
name =

‘theta11’

short.name =

‘t11’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta12’
name =

‘theta12’

short.name =

‘t12’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta13’
name =

‘theta13’

short.name =

‘t13’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta14’
name =

‘theta14’

short.name =

‘t14’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta15’
name =

‘theta15’

short.name =

‘t15’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta16’
name =

‘theta16’

short.name =

‘t16’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta17’
name =

‘theta17’

short.name =

‘t17’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta18’
name =

‘theta18’

short.name =

‘t18’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta19’
name =

‘theta19’

short.name =

‘t19’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta20’
name =

‘theta20’

short.name =

‘t20’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta21’
name =

‘theta21’

short.name =

‘t21’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta22’
name =

‘theta22’

short.name =

‘t22’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta23’
name =

‘theta23’

short.name =

‘t23’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta24’
name =

‘theta24’

short.name =

‘t24’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta25’
name =

‘theta25’

short.name =

‘t25’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta26’
name =

‘theta26’

short.name =

‘t26’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta27’
name =

‘theta27’

short.name =

‘t27’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta28’
name =

‘theta28’

short.name =

‘t28’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta29’
name =

‘theta29’

short.name =

‘t29’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta30’
name =

‘theta30’

short.name =

‘t30’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta31’
name =

‘theta31’

short.name =

‘t31’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta32’
name =

‘theta32’

short.name =

‘t32’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta33’
name =

‘theta33’

short.name =

‘t33’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta34’
name =

‘theta34’

short.name =

‘t34’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta35’
name =

‘theta35’

short.name =

‘t35’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta36’
name =

‘theta36’

short.name =

‘t36’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta37’
name =

‘theta37’

short.name =

‘t37’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta38’
name =

‘theta38’

short.name =

‘t38’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta39’
name =

‘theta39’

short.name =

‘t39’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta40’
name =

‘theta40’

short.name =

‘t40’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta41’
name =

‘theta41’

short.name =

‘t41’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta42’
name =

‘theta42’

short.name =

‘t42’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta43’
name =

‘theta43’

short.name =

‘t43’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta44’
name =

‘theta44’

short.name =

‘t44’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta45’
name =

‘theta45’

short.name =

‘t45’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta46’
name =

‘theta46’

short.name =

‘t46’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta47’
name =

‘theta47’

short.name =

‘t47’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta48’
name =

‘theta48’

short.name =

‘t48’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta49’
name =

‘theta49’

short.name =

‘t49’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta50’
name =

‘theta50’

short.name =

‘t50’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta51’
name =

‘theta51’

short.name =

‘t51’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta52’
name =

‘theta52’

short.name =

‘t52’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta53’
name =

‘theta53’

short.name =

‘t53’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta54’
name =

‘theta54’

short.name =

‘t54’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta55’
name =

‘theta55’

short.name =

‘t55’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta56’
name =

‘theta56’

short.name =

‘t56’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta57’
name =

‘theta57’

short.name =

‘t57’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta58’
name =

‘theta58’

short.name =

‘t58’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta59’
name =

‘theta59’

short.name =

‘t59’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta60’
name =

‘theta60’

short.name =

‘t60’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta61’
name =

‘theta61’

short.name =

‘t61’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta62’
name =

‘theta62’

short.name =

‘t62’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta63’
name =

‘theta63’

short.name =

‘t63’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta64’
name =

‘theta64’

short.name =

‘t64’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta65’
name =

‘theta65’

short.name =

‘t65’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta66’
name =

‘theta66’

short.name =

‘t66’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta67’
name =

‘theta67’

short.name =

‘t67’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta68’
name =

‘theta68’

short.name =

‘t68’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta69’
name =

‘theta69’

short.name =

‘t69’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta70’
name =

‘theta70’

short.name =

‘t70’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta71’
name =

‘theta71’

short.name =

‘t71’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta72’
name =

‘theta72’

short.name =

‘t72’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta73’
name =

‘theta73’

short.name =

‘t73’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta74’
name =

‘theta74’

short.name =

‘t74’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta75’
name =

‘theta75’

short.name =

‘t75’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta76’
name =

‘theta76’

short.name =

‘t76’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta77’
name =

‘theta77’

short.name =

‘t77’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta78’
name =

‘theta78’

short.name =

‘t78’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta79’
name =

‘theta79’

short.name =

‘t79’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta80’
name =

‘theta80’

short.name =

‘t80’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta81’
name =

‘theta81’

short.name =

‘t81’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta82’
name =

‘theta82’

short.name =

‘t82’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta83’
name =

‘theta83’

short.name =

‘t83’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta84’
name =

‘theta84’

short.name =

‘t84’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta85’
name =

‘theta85’

short.name =

‘t85’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta86’
name =

‘theta86’

short.name =

‘t86’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta87’
name =

‘theta87’

short.name =

‘t87’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta88’
name =

‘theta88’

short.name =

‘t88’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta89’
name =

‘theta89’

short.name =

‘t89’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta90’
name =

‘theta90’

short.name =

‘t90’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta91’
name =

‘theta91’

short.name =

‘t91’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta92’
name =

‘theta92’

short.name =

‘t92’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta93’
name =

‘theta93’

short.name =

‘t93’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta94’
name =

‘theta94’

short.name =

‘t94’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta95’
name =

‘theta95’

short.name =

‘t95’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta96’
name =

‘theta96’

short.name =

‘t96’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta97’
name =

‘theta97’

short.name =

‘t97’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta98’
name =

‘theta98’

short.name =

‘t98’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta99’
name =

‘theta99’

short.name =

‘t99’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta100’
name =

‘theta100’

short.name =

‘t100’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘spde2’

Model ‘spde3’.

Number of hyperparmeters are 100.

Hyperparameter ‘theta1’
name =

‘theta1’

short.name =

‘t1’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘mvnorm’

param =

‘1 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta2’
name =

‘theta2’

short.name =

‘t2’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta3’
name =

‘theta3’

short.name =

‘t3’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta4’
name =

‘theta4’

short.name =

‘t4’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta5’
name =

‘theta5’

short.name =

‘t5’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta6’
name =

‘theta6’

short.name =

‘t6’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta7’
name =

‘theta7’

short.name =

‘t7’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta8’
name =

‘theta8’

short.name =

‘t8’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta9’
name =

‘theta9’

short.name =

‘t9’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta10’
name =

‘theta10’

short.name =

‘t10’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta11’
name =

‘theta11’

short.name =

‘t11’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta12’
name =

‘theta12’

short.name =

‘t12’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta13’
name =

‘theta13’

short.name =

‘t13’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta14’
name =

‘theta14’

short.name =

‘t14’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta15’
name =

‘theta15’

short.name =

‘t15’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta16’
name =

‘theta16’

short.name =

‘t16’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta17’
name =

‘theta17’

short.name =

‘t17’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta18’
name =

‘theta18’

short.name =

‘t18’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta19’
name =

‘theta19’

short.name =

‘t19’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta20’
name =

‘theta20’

short.name =

‘t20’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta21’
name =

‘theta21’

short.name =

‘t21’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta22’
name =

‘theta22’

short.name =

‘t22’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta23’
name =

‘theta23’

short.name =

‘t23’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta24’
name =

‘theta24’

short.name =

‘t24’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta25’
name =

‘theta25’

short.name =

‘t25’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta26’
name =

‘theta26’

short.name =

‘t26’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta27’
name =

‘theta27’

short.name =

‘t27’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta28’
name =

‘theta28’

short.name =

‘t28’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta29’
name =

‘theta29’

short.name =

‘t29’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta30’
name =

‘theta30’

short.name =

‘t30’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta31’
name =

‘theta31’

short.name =

‘t31’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta32’
name =

‘theta32’

short.name =

‘t32’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta33’
name =

‘theta33’

short.name =

‘t33’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta34’
name =

‘theta34’

short.name =

‘t34’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta35’
name =

‘theta35’

short.name =

‘t35’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta36’
name =

‘theta36’

short.name =

‘t36’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta37’
name =

‘theta37’

short.name =

‘t37’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta38’
name =

‘theta38’

short.name =

‘t38’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta39’
name =

‘theta39’

short.name =

‘t39’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta40’
name =

‘theta40’

short.name =

‘t40’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta41’
name =

‘theta41’

short.name =

‘t41’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta42’
name =

‘theta42’

short.name =

‘t42’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta43’
name =

‘theta43’

short.name =

‘t43’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta44’
name =

‘theta44’

short.name =

‘t44’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta45’
name =

‘theta45’

short.name =

‘t45’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta46’
name =

‘theta46’

short.name =

‘t46’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta47’
name =

‘theta47’

short.name =

‘t47’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta48’
name =

‘theta48’

short.name =

‘t48’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta49’
name =

‘theta49’

short.name =

‘t49’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta50’
name =

‘theta50’

short.name =

‘t50’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta51’
name =

‘theta51’

short.name =

‘t51’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta52’
name =

‘theta52’

short.name =

‘t52’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta53’
name =

‘theta53’

short.name =

‘t53’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta54’
name =

‘theta54’

short.name =

‘t54’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta55’
name =

‘theta55’

short.name =

‘t55’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta56’
name =

‘theta56’

short.name =

‘t56’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta57’
name =

‘theta57’

short.name =

‘t57’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta58’
name =

‘theta58’

short.name =

‘t58’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta59’
name =

‘theta59’

short.name =

‘t59’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta60’
name =

‘theta60’

short.name =

‘t60’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta61’
name =

‘theta61’

short.name =

‘t61’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta62’
name =

‘theta62’

short.name =

‘t62’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta63’
name =

‘theta63’

short.name =

‘t63’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta64’
name =

‘theta64’

short.name =

‘t64’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta65’
name =

‘theta65’

short.name =

‘t65’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta66’
name =

‘theta66’

short.name =

‘t66’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta67’
name =

‘theta67’

short.name =

‘t67’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta68’
name =

‘theta68’

short.name =

‘t68’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta69’
name =

‘theta69’

short.name =

‘t69’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta70’
name =

‘theta70’

short.name =

‘t70’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta71’
name =

‘theta71’

short.name =

‘t71’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta72’
name =

‘theta72’

short.name =

‘t72’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta73’
name =

‘theta73’

short.name =

‘t73’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta74’
name =

‘theta74’

short.name =

‘t74’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta75’
name =

‘theta75’

short.name =

‘t75’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta76’
name =

‘theta76’

short.name =

‘t76’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta77’
name =

‘theta77’

short.name =

‘t77’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta78’
name =

‘theta78’

short.name =

‘t78’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta79’
name =

‘theta79’

short.name =

‘t79’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta80’
name =

‘theta80’

short.name =

‘t80’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta81’
name =

‘theta81’

short.name =

‘t81’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta82’
name =

‘theta82’

short.name =

‘t82’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta83’
name =

‘theta83’

short.name =

‘t83’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta84’
name =

‘theta84’

short.name =

‘t84’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta85’
name =

‘theta85’

short.name =

‘t85’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta86’
name =

‘theta86’

short.name =

‘t86’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta87’
name =

‘theta87’

short.name =

‘t87’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta88’
name =

‘theta88’

short.name =

‘t88’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta89’
name =

‘theta89’

short.name =

‘t89’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta90’
name =

‘theta90’

short.name =

‘t90’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta91’
name =

‘theta91’

short.name =

‘t91’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta92’
name =

‘theta92’

short.name =

‘t92’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta93’
name =

‘theta93’

short.name =

‘t93’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta94’
name =

‘theta94’

short.name =

‘t94’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta95’
name =

‘theta95’

short.name =

‘t95’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta96’
name =

‘theta96’

short.name =

‘t96’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta97’
name =

‘theta97’

short.name =

‘t97’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta98’
name =

‘theta98’

short.name =

‘t98’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta99’
name =

‘theta99’

short.name =

‘t99’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta100’
name =

‘theta100’

short.name =

‘t100’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘spde3’

Model ‘iid1d’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘precision’

short.name =

‘prec’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘wishart1d’

param =

‘2 1e-04’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘TRUE’

pdf =

‘iid123d’

Model ‘iid2d’.

Number of hyperparmeters are 3.

Hyperparameter ‘theta1’
name =

‘log precision1’

short.name =

‘prec1’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘wishart2d’

param =

‘4 1 1 0’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘log precision2’

short.name =

‘prec2’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta3’
name =

‘logit correlation’

short.name =

‘cor’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘TRUE’

aug.factor =

‘1’

aug.constr =

‘1 2’

n.div.by =

‘2’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘iid123d’

Model ‘iid3d’.

Number of hyperparmeters are 6.

Hyperparameter ‘theta1’
name =

‘log precision1’

short.name =

‘prec1’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘wishart3d’

param =

‘7 1 1 1 0 0 0’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘log precision2’

short.name =

‘prec2’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta3’
name =

‘log precision3’

short.name =

‘prec3’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta4’
name =

‘logit correlation12’

short.name =

‘cor12’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta5’
name =

‘logit correlation13’

short.name =

‘cor13’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta6’
name =

‘logit correlation23’

short.name =

‘cor23’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘TRUE’

aug.factor =

‘1’

aug.constr =

‘1 2 3’

n.div.by =

‘3’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘iid123d’

Model ‘iid4d’.

Number of hyperparmeters are 10.

Hyperparameter ‘theta1’
name =

‘log precision1’

short.name =

‘prec1’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘wishart4d’

param =

‘11 1 1 1 1 0 0 0 0 0 0’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘log precision2’

short.name =

‘prec2’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta3’
name =

‘log precision3’

short.name =

‘prec3’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta4’
name =

‘log precision4’

short.name =

‘prec4’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta5’
name =

‘logit correlation12’

short.name =

‘cor12’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta6’
name =

‘logit correlation13’

short.name =

‘cor13’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta7’
name =

‘logit correlation14’

short.name =

‘cor14’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta8’
name =

‘logit correlation23’

short.name =

‘cor23’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta9’
name =

‘logit correlation24’

short.name =

‘cor24’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta10’
name =

‘logit correlation34’

short.name =

‘cor34’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘TRUE’

aug.factor =

‘1’

aug.constr =

‘1 2 3 4’

n.div.by =

‘4’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘iid123d’

Model ‘iid5d’.

Number of hyperparmeters are 15.

Hyperparameter ‘theta1’
name =

‘log precision1’

short.name =

‘prec1’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘wishart5d’

param =

‘16 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘log precision2’

short.name =

‘prec2’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta3’
name =

‘log precision3’

short.name =

‘prec3’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta4’
name =

‘log precision4’

short.name =

‘prec4’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta5’
name =

‘log precision5’

short.name =

‘prec5’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta6’
name =

‘logit correlation12’

short.name =

‘cor12’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta7’
name =

‘logit correlation13’

short.name =

‘cor13’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta8’
name =

‘logit correlation14’

short.name =

‘cor14’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta9’
name =

‘logit correlation15’

short.name =

‘cor15’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta10’
name =

‘logit correlation23’

short.name =

‘cor23’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta11’
name =

‘logit correlation24’

short.name =

‘cor24’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta12’
name =

‘logit correlation25’

short.name =

‘cor25’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta13’
name =

‘logit correlation34’

short.name =

‘cor34’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta14’
name =

‘logit correlation35’

short.name =

‘cor35’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta15’
name =

‘logit correlation45’

short.name =

‘cor45’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘TRUE’

aug.factor =

‘1’

aug.constr =

‘1 2 3 4 5’

n.div.by =

‘5’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘iid123d’

Model ‘2diid’.

Number of hyperparmeters are 3.

Hyperparameter ‘theta1’
name =

‘log precision1’

short.name =

‘prec1’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘log precision2’

short.name =

‘prec2’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta3’
name =

‘correlation’

short.name =

‘cor’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 0.15’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘1 2’

n.div.by =

‘2’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘iid123d’

Model ‘z’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision’

short.name =

‘prec’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘z’

status =

‘experimental’

Model ‘rw2d’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision’

short.name =

‘prec’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
constr =

‘TRUE’

nrow.ncol =

‘TRUE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘TRUE’

pdf =

‘rw2d’

Model ‘rw2diid’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘log precision’

short.name =

‘prec’

prior =

‘pc.prec’

param =

‘1 0.01’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘logit phi’

short.name =

‘phi’

prior =

‘pc’

param =

‘0.5 -1’

initial =

‘3’

fixed =

‘FALSE’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
constr =

‘TRUE’

nrow.ncol =

‘TRUE’

augmented =

‘TRUE’

aug.factor =

‘2’

aug.constr =

‘2’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘TRUE’

status =

‘experimental’

pdf =

‘rw2diid’

Model ‘slm’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘log precision’

short.name =

‘prec’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘rho’

short.name =

‘rho’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 10’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) 1/(1+exp(-x))'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘slm’

status =

‘experimental’

Model ‘matern2d’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘log precision’

short.name =

‘prec’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘log range’

short.name =

‘range’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 0.01’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘TRUE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘TRUE’

pdf =

‘matern2d’

Model ‘copy’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘beta’

short.name =

‘b’

initial =

‘1’

fixed =

‘TRUE’

prior =

‘normal’

param =

‘1 10’

to.theta =

'function(x, REPLACE.ME.low, REPLACE.ME.high) {} if (all(is.infinite(c(low, high))) || low == high) {} return (x) else if (all(is.finite(c(low, high)))) {} stopifnot(low < high) return (log( - (low - x)/(high -x))) else if (is.finite(low) && is.infinite(high) && high > low) {} return (log(x-low)) else {} stop("Condition not yet implemented") '

from.theta =

'function(x, REPLACE.ME.low, REPLACE.ME.high) {} if (all(is.infinite(c(low, high))) || low == high) {} return (x) else if (all(is.finite(c(low, high)))) {} stopifnot(low < high) return (low + exp(x)/(1+exp(x)) * (high - low)) else if (is.finite(low) && is.infinite(high) && high > low) {} return (low + exp(x)) else {} stop("Condition not yet implemented") '

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

pdf =

‘NA’

Model ‘clinear’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘beta’

short.name =

‘b’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘1 10’

to.theta =

'function(x, REPLACE.ME.low, REPLACE.ME.high) {} if (all(is.infinite(c(low, high))) || low == high) {} stopifnot(low < high) return (x) else if (all(is.finite(c(low, high)))) {} stopifnot(low < high) return (log( - (low - x)/(high -x))) else if (is.finite(low) && is.infinite(high) && high > low) {} return (log(x-low)) else {} stop("Condition not yet implemented") '

from.theta =

'function(x, REPLACE.ME.low, REPLACE.ME.high) {} if (all(is.infinite(c(low, high))) || low == high) {} stopifnot(low < high) return (x) else if (all(is.finite(c(low, high)))) {} stopifnot(low < high) return (low + exp(x)/(1+exp(x)) * (high - low)) else if (is.finite(low) && is.infinite(high) && high > low) {} return (low + exp(x)) else {} stop("Condition not yet implemented") '

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

pdf =

‘clinear’

Model ‘sigm’.

Number of hyperparmeters are 3.

Hyperparameter ‘theta1’
name =

‘beta’

short.name =

‘b’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘1 10’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta2’
name =

‘loghalflife’

short.name =

‘halflife’

initial =

‘3’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘3 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta3’
name =

‘logshape’

short.name =

‘shape’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘10 10’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

status =

‘experimental’

pdf =

‘sigm’

Model ‘revsigm’.

Number of hyperparmeters are 3.

Hyperparameter ‘theta1’
name =

‘beta’

short.name =

‘b’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘1 10’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta2’
name =

‘loghalflife’

short.name =

‘halflife’

initial =

‘3’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘3 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta3’
name =

‘logshape’

short.name =

‘shape’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘10 10’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

status =

‘experimental’

pdf =

‘sigm’

Section ‘group’.

Valid models in this section are:

Model ‘exchangeable’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘logit correlation’

short.name =

‘rho’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 0.2’

to.theta =

'function(x, REPLACE.ME.ngroup) log((1+x*(ngroup-1))/(1-x))'

from.theta =

'function(x, REPLACE.ME.ngroup) (exp(x)-1)/(exp(x) + ngroup -1)'

Properties:
Model ‘ar1’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘logit correlation’

short.name =

‘rho’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 0.15’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Properties:
Model ‘ar’.

Number of hyperparmeters are 11.

Hyperparameter ‘theta1’
name =

‘log precision’

short.name =

‘prec’

initial =

‘0’

fixed =

‘TRUE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘pacf1’

short.name =

‘pacf1’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘mvnorm’

param =

‘0 0.15’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta3’
name =

‘pacf2’

short.name =

‘pacf2’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta4’
name =

‘pacf3’

short.name =

‘pacf3’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta5’
name =

‘pacf4’

short.name =

‘pacf4’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta6’
name =

‘pacf5’

short.name =

‘pacf5’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta7’
name =

‘pacf6’

short.name =

‘pacf6’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta8’
name =

‘pacf7’

short.name =

‘pacf7’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta9’
name =

‘pacf8’

short.name =

‘pacf8’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta10’
name =

‘pacf9’

short.name =

‘pacf9’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta11’
name =

‘pacf10’

short.name =

‘pacf10’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Properties:
Model ‘rw1’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘0’

fixed =

‘TRUE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
Model ‘rw2’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘0’

fixed =

‘TRUE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
Model ‘besag’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘0’

fixed =

‘TRUE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
Model ‘I’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘0’

fixed =

‘TRUE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
Section ‘mix’.

Valid models in this section are:

Model ‘gaussian’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 0.01’

initial =

‘0’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
Section ‘link’.

Valid models in this section are:

Model ‘default’.

Number of hyperparmeters are 0.

Model ‘cloglog’.

Number of hyperparmeters are 0.

Model ‘identity’.

Number of hyperparmeters are 0.

Model ‘log’.

Number of hyperparmeters are 0.

Model ‘logit’.

Number of hyperparmeters are 0.

Model ‘probit’.

Number of hyperparmeters are 0.

Model ‘tan’.

Number of hyperparmeters are 0.

Model ‘sslogit’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘sensitivity’

short.name =

‘sens’

prior =

‘logitbeta’

param =

‘10 5’

initial =

‘1’

fixed =

‘FALSE’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Hyperparameter ‘theta2’
name =

‘specificity’

short.name =

‘spec’

prior =

‘logitbeta’

param =

‘10 5’

initial =

‘1’

fixed =

‘FALSE’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
pdf =

‘NA’

Model ‘logoffset’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘beta’

short.name =

‘b’

prior =

‘normal’

param =

‘0 100’

initial =

‘0’

fixed =

‘TRUE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
pdf =

‘logoffset’

Model ‘test1’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘beta’

short.name =

‘b’

prior =

‘normal’

param =

‘0 100’

initial =

‘0’

fixed =

‘FALSE’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Properties:
pdf =

‘NA’

Model ‘special2’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘beta’

short.name =

‘b’

prior =

‘normal’

param =

‘0 10’

initial =

‘0’

fixed =

‘FALSE’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Properties:
pdf =

‘NA’

Model ‘special1’.

Number of hyperparmeters are 11.

Hyperparameter ‘theta1’
name =

‘log precision’

short.name =

‘prec’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta2’
name =

‘beta1’

short.name =

‘beta1’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘mvnorm’

param =

‘0 100’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta3’
name =

‘beta2’

short.name =

‘beta2’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta4’
name =

‘beta3’

short.name =

‘beta3’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta5’
name =

‘beta4’

short.name =

‘beta4’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta6’
name =

‘beta5’

short.name =

‘beta5’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta7’
name =

‘beta6’

short.name =

‘beta6’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta8’
name =

‘beta7’

short.name =

‘beta7’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta9’
name =

‘beta8’

short.name =

‘beta8’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta10’
name =

‘beta9’

short.name =

‘beta9’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta11’
name =

‘beta10’

short.name =

‘beta10’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Properties:
pdf =

‘NA’

Section ‘predictor’.

Valid models in this section are:

Model ‘predictor’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision’

short.name =

‘prec’

initial =

‘11’

fixed =

‘TRUE’

prior =

‘loggamma’

param =

‘1 1e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
Section ‘hazard’.

Valid models in this section are:

Model ‘rw1’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision’

short.name =

‘prec’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
Model ‘rw2’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision’

short.name =

‘prec’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
Section ‘likelihood’.

Valid models in this section are:

Model ‘poisson’.

Number of hyperparmeters are 0.

Model ‘gpoisson’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘overdispersion’

short.name =

‘phi’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘p’

short.name =

‘p’

initial =

‘1’

fixed =

‘TRUE’

prior =

‘normal’

param =

‘1 100’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Properties:
survival =

‘FALSE’

discrete =

‘TRUE’

link =

‘default log logoffset’

pdf =

‘gpoisson’

status =

‘experimental’

Model ‘binomial’.

Number of hyperparmeters are 0.

Model ‘testbinomial1’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘sensitivity’

short.name =

‘s’

initial =

‘3’

fixed =

‘FALSE’

prior =

‘logitbeta’

param =

‘2 1’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Hyperparameter ‘theta2’
name =

‘specificity’

short.name =

‘e’

initial =

‘3’

fixed =

‘FALSE’

prior =

‘logitbeta’

param =

‘2 1’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
status =

‘experimental’

survival =

‘FALSE’

discrete =

‘TRUE’

link =

‘default logit probit cloglog log’

pdf =

‘testbinomial1’

Model ‘gamma’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘precision parameter’

short.name =

‘prec’

initial =

‘4.60517018598809’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 0.01’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log’

pdf =

‘gamma’

Model ‘gammacount’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log alpha’

short.name =

‘alpha’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘10 10’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log’

status =

‘experimental’

pdf =

‘gammacount’

Model ‘kumar’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘precision parameter’

short.name =

‘prec’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 0.001’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘quantile’

short.name =

‘q’

initial =

‘0.5’

fixed =

‘TRUE’

prior =

‘invalid’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default logit’

pdf =

‘kumar’

Model ‘beta’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘precision parameter’

short.name =

‘phi’

initial =

‘2.30258509299405’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 0.1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default logit probit cloglog’

pdf =

‘beta’

Model ‘betabinomial’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘overdispersion’

short.name =

‘rho’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘0 0.4’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
survival =

‘FALSE’

discrete =

‘TRUE’

link =

‘default logit probit cloglog’

pdf =

‘betabinomial’

Model ‘cbinomial’.

Number of hyperparmeters are 0.

Model ‘nbinomial’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘size’

short.name =

‘size’

initial =

‘2.30258509299405’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
survival =

‘FALSE’

discrete =

‘TRUE’

link =

‘default log logoffset’

pdf =

‘nbinomial’

Model ‘simplex’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision’

short.name =

‘prec’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default logit probit cloglog’

pdf =

‘simplex’

Model ‘gaussian’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision’

short.name =

‘prec’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default identity logit log’

pdf =

‘gaussian’

Model ‘normal’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision’

short.name =

‘prec’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default identity’

pdf =

‘gaussian’

Model ‘circularnormal’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision parameter’

short.name =

‘prec’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 0.01’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default tan’

pdf =

‘circular-normal’

status =

‘experimental’

Model ‘wrappedcauchy’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision parameter’

short.name =

‘prec’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 0.005’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default tan’

pdf =

‘wrapped-cauchy’

status =

‘disabled’

Model ‘iidgamma’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘logshape’

short.name =

‘shape’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘100 100’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘lograte’

short.name =

‘rate’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘100 100’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default identity’

pdf =

‘iidgamma’

status =

‘experimental’

Model ‘iidlogitbeta’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘log.a’

short.name =

‘a’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘log.b’

short.name =

‘b’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default logit’

pdf =

‘iidlogitbeta’

status =

‘experimental’

Model ‘loggammafrailty’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision’

short.name =

‘prec’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default identity’

pdf =

‘loggammafrailty’

Model ‘logistic’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision’

short.name =

‘prec’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default identity’

pdf =

‘logistic’

Model ‘skewnormal’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘inverse.scale’

short.name =

‘iscale’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

Hyperparameter ‘theta2’
name =

‘skewness’

short.name =

‘skew’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘0 10’

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default identity’

pdf =

‘sn’

Model ‘sn’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘log inverse scale’

short.name =

‘iscale’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

Hyperparameter ‘theta2’
name =

‘logit skewness’

short.name =

‘skew’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘0 10’

to.theta =

'function(x, shape.max = 1) log((1+x/shape.max)/(1-x/shape.max))'

from.theta =

'function(x, shape.max = 1) shape.max*(2*exp(x)/(1+exp(x))-1)'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default identity’

pdf =

‘sn’

Model ‘sn2’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘log precision’

short.name =

‘prec’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

Hyperparameter ‘theta2’
name =

‘logit skewness’

short.name =

‘skew’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘0 10’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) (2*exp(x)/(1+exp(x))-1)'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default identity’

status =

‘experimental’

pdf =

‘sn2’

Model ‘gev’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘log precision’

short.name =

‘prec’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘gev parameter’

short.name =

‘gev’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘0 25’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default identity’

status =

‘experimental’

pdf =

‘gev’

Model ‘laplace’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision’

short.name =

‘prec’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default identity’

status =

‘disabled’

pdf =

‘laplace’

Model ‘lognormal’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision’

short.name =

‘prec’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
survival =

‘TRUE’

discrete =

‘FALSE’

link =

‘default identity’

pdf =

‘lognormal’

Model ‘exponential’.

Number of hyperparmeters are 0.

Model ‘coxph’.

Number of hyperparmeters are 0.

Model ‘weibull’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log alpha’

short.name =

‘a’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘25 25’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
survival =

‘TRUE’

discrete =

‘FALSE’

link =

‘default log’

pdf =

‘weibull’

Model ‘loglogistic’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log alpha’

short.name =

‘alpha’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘25 25’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
survival =

‘TRUE’

discrete =

‘FALSE’

link =

‘default log’

pdf =

‘loglogistic’

Model ‘weibullcure’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘log alpha’

short.name =

‘a’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘25 25’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘logit probability’

short.name =

‘prob’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
survival =

‘TRUE’

discrete =

‘FALSE’

link =

‘default log’

pdf =

‘NA’

Model ‘stochvol’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision’

short.name =

‘prec’

initial =

‘500’

fixed =

‘TRUE’

prior =

‘loggamma’

param =

‘1 0.005’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log’

pdf =

‘stochvolgaussian’

Model ‘stochvolt’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log degrees of freedom’

short.name =

‘dof’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 0.5’

to.theta =

'function(x) log(x-2)'

from.theta =

'function(x) 2+exp(x)'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log’

pdf =

‘stochvolt’

Model ‘stochvolnig’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘skewness’

short.name =

‘skew’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘0 10’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta2’
name =

‘shape’

short.name =

‘shape’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 0.5’

to.theta =

'function(x) log(x-1)'

from.theta =

'function(x) 1+exp(x)'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log’

pdf =

‘stochvolnig’

Model ‘zeroinflatedpoisson0’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘logit probability’

short.name =

‘prob’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log’

pdf =

‘zeroinflated’

Model ‘zeroinflatedpoisson1’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘logit probability’

short.name =

‘prob’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log’

pdf =

‘zeroinflated’

Model ‘zeroinflatedpoisson2’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log alpha’

short.name =

‘a’

initial =

‘0.693147180559945’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘0.693147180559945 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log’

pdf =

‘zeroinflated’

Model ‘zeroinflatedbetabinomial0’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘overdispersion’

short.name =

‘rho’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘0 0.4’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Hyperparameter ‘theta2’
name =

‘logit probability’

short.name =

‘prob’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
survival =

‘FALSE’

discrete =

‘TRUE’

link =

‘default logit probit cloglog’

pdf =

‘zeroinflated’

Model ‘zeroinflatedbetabinomial1’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘overdispersion’

short.name =

‘rho’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘0 0.4’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Hyperparameter ‘theta2’
name =

‘logit probability’

short.name =

‘prob’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
survival =

‘FALSE’

discrete =

‘TRUE’

link =

‘default logit probit cloglog’

pdf =

‘zeroinflated’

Model ‘zeroinflatedbinomial0’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘logit probability’

short.name =

‘prob’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default logit probit cloglog’

pdf =

‘zeroinflated’

Model ‘zeroinflatedbinomial1’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘logit probability’

short.name =

‘prob’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default logit probit cloglog’

pdf =

‘zeroinflated’

Model ‘zeroinflatedbinomial2’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘alpha’

short.name =

‘alpha’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default logit probit cloglog’

pdf =

‘zeroinflated’

Model ‘zeroninflatedbinomial2’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘alpha1’

short.name =

‘alpha1’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘alpha2’

short.name =

‘alpha2’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default logit probit cloglog’

pdf =

‘NA’

Model ‘zeroinflatedbetabinomial2’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘log alpha’

short.name =

‘a’

initial =

‘0.693147180559945’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘0.693147180559945 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘beta’

short.name =

‘b’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘0 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default logit probit cloglog’

pdf =

‘zeroinflated’

Model ‘zeroinflatednbinomial0’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘log size’

short.name =

‘size’

initial =

‘2.30258509299405’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘logit probability’

short.name =

‘prob’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log’

pdf =

‘zeroinflated’

Model ‘zeroinflatednbinomial1’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘log size’

short.name =

‘size’

initial =

‘2.30258509299405’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘logit probability’

short.name =

‘prob’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log’

pdf =

‘zeroinflated’

Model ‘zeroinflatednbinomial1strata2’.

Number of hyperparmeters are 3.

Hyperparameter ‘theta1’
name =

‘log size’

short.name =

‘size’

initial =

‘2.30258509299405’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘logit probability 1’

short.name =

‘prob1’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Hyperparameter ‘theta3’
name =

‘logit probability 2’

short.name =

‘prob2’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
status =

‘experimental’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log’

pdf =

‘zeroinflated’

Model ‘zeroinflatednbinomial1strata3’.

Number of hyperparmeters are 3.

Hyperparameter ‘theta1’
name =

‘log size 1’

short.name =

‘size1’

initial =

‘2.30258509299405’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘log size 2’

short.name =

‘size2’

initial =

‘2.30258509299405’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta3’
name =

‘logit probability’

short.name =

‘prob’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
status =

‘experimental’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log’

pdf =

‘zeroinflated’

Model ‘zeroinflatednbinomial2’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘log size’

short.name =

‘size’

initial =

‘2.30258509299405’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘log alpha’

short.name =

‘a’

initial =

‘0.693147180559945’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘2 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log’

pdf =

‘zeroinflated’

Model ‘t’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
name =

‘log precision’

short.name =

‘prec’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
name =

‘log degrees of freedom’

short.name =

‘dof’

initial =

‘5’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 0.5’

to.theta =

'function(x) log(x-2)'

from.theta =

'function(x) 2+exp(x)'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default identity’

pdf =

‘student-t’

Model ‘tstrata’.

Number of hyperparmeters are 11.

Hyperparameter ‘theta1’
name =

‘log degrees of freedom’

short.name =

‘dof’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 0.01’

to.theta =

'function(x) log(x-5)'

from.theta =

'function(x) 5+exp(x)'

Hyperparameter ‘theta2’
name =

‘log precision1’

short.name =

‘prec1’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta3’
name =

‘log precision2’

short.name =

‘prec2’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta4’
name =

‘log precision3’

short.name =

‘prec3’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta5’
name =

‘log precision4’

short.name =

‘prec4’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta6’
name =

‘log precision5’

short.name =

‘prec5’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta7’
name =

‘log precision6’

short.name =

‘prec6’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta8’
name =

‘log precision7’

short.name =

‘prec7’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta9’
name =

‘log precision8’

short.name =

‘prec8’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta10’
name =

‘log precision9’

short.name =

‘prec9’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta11’
name =

‘log precision10’

short.name =

‘prec10’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default identity’

pdf =

‘tstrata’

Model ‘logperiodogram’.

Number of hyperparmeters are 0.

Section ‘prior’.

Valid models in this section are:

Model ‘normal’.

Number of parameters in the prior = 2

Model ‘gaussian’.

Number of parameters in the prior = 2

Model ‘wishart1d’.

Number of parameters in the prior = 2

Model ‘wishart2d’.

Number of parameters in the prior = 4

Model ‘wishart3d’.

Number of parameters in the prior = 7

Model ‘wishart4d’.

Number of parameters in the prior = 11

Model ‘wishart5d’.

Number of parameters in the prior = 16

Model ‘loggamma’.

Number of parameters in the prior = 2

Model ‘minuslogsqrtruncnormal’.

Number of parameters in the prior = 2

Model ‘logtnormal’.

Number of parameters in the prior = 2

Model ‘logtgaussian’.

Number of parameters in the prior = 2

Model ‘flat’.

Number of parameters in the prior = 0

Model ‘logflat’.

Number of parameters in the prior = 0

Model ‘logiflat’.

Number of parameters in the prior = 0

Model ‘mvnorm’.

Number of parameters in the prior = -1

Model ‘pc.ar’.

Number of parameters in the prior = 1

Model ‘none’.

Number of parameters in the prior = 0

Model ‘invalid’.

Number of parameters in the prior = 0

Model ‘betacorrelation’.

Number of parameters in the prior = 2

Model ‘logitbeta’.

Number of parameters in the prior = 2

Model ‘pc.prec’.

Number of parameters in the prior = 2

Model ‘pc.dof’.

Number of parameters in the prior = 2

Model ‘pc.rho0’.

Number of parameters in the prior = 2

Model ‘pc.rho1’.

Number of parameters in the prior = 2

Model ‘pc.spde.GA’.

Number of parameters in the prior = 4

Model ‘pc’.

Number of parameters in the prior = 2

Model ‘ref.ar’.

Number of parameters in the prior = 0

Model ‘jeffreystdf’.

Number of parameters in the prior = 0

Model ‘expression:’.

Number of parameters in the prior = -1

Model ‘table:’.

Number of parameters in the prior = -1

Section ‘wrapper’.

Valid models in this section are:

Model ‘joint’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
name =

‘log precision’

short.name =

‘prec’

initial =

‘0’

fixed =

‘TRUE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

pdf =

‘NA’

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
## How to set hyperparameters to pass as the argument 'hyper'. This
## format is compatible with the old style (using 'initial', 'fixed',
## 'prior', 'param'), but the new style using 'hyper' take preceedence
## over the old style. The two styles can also be mixed. The old style
## might be removed from the code in the future...

## Only a subset need to be given
   hyper = list(theta = list(initial = 2))
## The `name' can be used instead of 'theta', or 'theta1', 'theta2',...
   hyper = list(precision = list(initial = 2))
   hyper = list(precision = list(prior = "flat", param = numeric(0)))
   hyper = list(theta2 = list(initial=3), theta1 = list(prior = "gaussian"))
## The 'short.name' can be used instead of 'name'
   hyper = list(rho = list(param = c(0,1)))

andrewzm/INLA documentation built on May 10, 2019, 11:12 a.m.