Description Usage Value Examples
This page describe the models implemented in inla
, divided into sections: latent, group, mix, link, predictor, hazard, likelihood, prior, wrapper .
1 |
Valid sections are: latent, group, mix, link, predictor, hazard, likelihood, prior, wrapper
Valid models in this section are:
Number of hyperparmeters are 0.
Number of hyperparmeters are 1.
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘indep’
Number of hyperparmeters are 4.
‘beta’
‘b’
‘gaussian’
‘1 0.001’
‘1’
‘FALSE’
'function(x) x
'
'function(x) x
'
‘prec.u’
‘prec’
‘loggamma’
‘1 1e-04’
‘9.21034037197618’
‘TRUE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘mean.x’
‘mu.x’
‘gaussian’
‘0 1e-04’
‘0’
‘TRUE’
'function(x) x
'
'function(x) x
'
‘prec.x’
‘prec.x’
‘loggamma’
‘1 10000’
‘-9.21034037197618’
‘TRUE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘experimental’
‘mec’
Number of hyperparmeters are 2.
‘beta’
‘b’
‘gaussian’
‘1 0.001’
‘1’
‘FALSE’
'function(x) x
'
'function(x) x
'
‘prec.u’
‘prec’
‘loggamma’
‘1 1e-04’
‘6.90775527898214’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘experimental’
‘meb’
Number of hyperparmeters are 0.
Number of hyperparmeters are 1.
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘TRUE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘rw1’
Number of hyperparmeters are 1.
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘TRUE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘rw2’
Number of hyperparmeters are 1.
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘TRUE’
‘FALSE’
‘FALSE’
‘2’
‘1’
‘NULL’
‘FALSE’
‘FALSE’
‘crw2’
Number of hyperparmeters are 1.
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘seasonal’
Number of hyperparmeters are 1.
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘TRUE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘TRUE’
‘TRUE’
‘besag’
Number of hyperparmeters are 2.
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘scaling parameter’
‘a’
‘loggamma’
‘10 10’
‘0’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘1 2’
‘2’
‘TRUE’
‘TRUE’
‘besag2’
Number of hyperparmeters are 2.
‘log unstructured precision’
‘prec.unstruct’
‘loggamma’
‘1 5e-04’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log spatial precision’
‘prec.spatial’
‘loggamma’
‘1 5e-04’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘TRUE’
‘FALSE’
‘TRUE’
‘2’
‘2’
‘NULL’
‘TRUE’
‘TRUE’
‘bym’
Number of hyperparmeters are 2.
‘log precision’
‘prec’
‘pc.prec’
‘1 0.01’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘logit phi’
‘phi’
‘pc’
‘0.5 -1’
‘-3’
‘FALSE’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘TRUE’
‘FALSE’
‘TRUE’
‘2’
‘2’
‘NULL’
‘TRUE’
‘TRUE’
‘experimental’
‘bym2’
Number of hyperparmeters are 2.
‘log precision’
‘prec’
‘loggamma’
‘1 5e-04’
‘2’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log diagonal’
‘diag’
‘loggamma’
‘1 1’
‘1’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘TRUE’
‘TRUE’
‘experimental’
‘besagproper’
Number of hyperparmeters are 2.
‘log precision’
‘prec’
‘loggamma’
‘1 5e-04’
‘2’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘logit lambda’
‘lambda’
‘gaussian’
‘0 0.45’
‘3’
‘FALSE’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘TRUE’
‘TRUE’
‘experimental’
‘besagproper2’
Number of hyperparmeters are 2.
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘logit lag one correlation’
‘rho’
‘normal’
‘0 0.15’
‘2’
‘FALSE’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘ar1’
Number of hyperparmeters are 11.
‘log precision’
‘prec’
‘4’
‘FALSE’
‘pc.prec’
‘1 0.01’
'function(x) log(x)
'
'function(x) exp(x)
'
‘pacf1’
‘pacf1’
‘1’
‘FALSE’
‘pc.ar’
‘1’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘pacf2’
‘pacf2’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘pacf3’
‘pacf3’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘pacf4’
‘pacf4’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘pacf5’
‘pacf5’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘pacf6’
‘pacf6’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘pacf7’
‘pacf7’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘pacf8’
‘pacf8’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘pacf9’
‘pacf9’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘pacf10’
‘pacf10’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘experimental’
‘ar’
Number of hyperparmeters are 2.
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log phi’
‘phi’
‘normal’
‘0 0.2’
‘-1’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘ou’
Number of hyperparmeters are 1.
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘TRUE’
‘TRUE’
‘generic0’
Number of hyperparmeters are 1.
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘TRUE’
‘TRUE’
‘generic0’
Number of hyperparmeters are 2.
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘beta’
‘beta’
‘2’
‘FALSE’
‘gaussian’
‘0 0.1’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘TRUE’
‘TRUE’
‘generic1’
Number of hyperparmeters are 2.
‘log precision cmatrix’
‘prec’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision random’
‘prec.random’
‘4’
‘FALSE’
‘loggamma’
‘1 0.001’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘FALSE’
‘2’
‘2’
‘NULL’
‘TRUE’
‘TRUE’
‘generic2’
Number of hyperparmeters are 11.
‘log precision1’
‘prec1’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision2’
‘prec2’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision3’
‘prec3’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision4’
‘prec4’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision5’
‘prec5’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision6’
‘prec6’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision7’
‘prec7’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision8’
‘prec8’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision9’
‘prec9’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision10’
‘prec10’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision common’
‘prec.common’
‘0’
‘TRUE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘TRUE’
‘TRUE’
‘experimental’
‘generic3’
Number of hyperparmeters are 4.
‘theta.T’
‘T’
‘2’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘theta.K’
‘K’
‘-2’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘theta.KT’
‘KT’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘theta.OC’
‘OC’
‘-20’
‘TRUE’
‘normal’
‘0 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘TRUE’
‘TRUE’
‘spde’
Number of hyperparmeters are 100.
‘theta1’
‘t1’
‘0’
‘FALSE’
‘mvnorm’
‘1 1’
'function(x) x
'
'function(x) x
'
‘theta2’
‘t2’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta3’
‘t3’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta4’
‘t4’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta5’
‘t5’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta6’
‘t6’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta7’
‘t7’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta8’
‘t8’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta9’
‘t9’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta10’
‘t10’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta11’
‘t11’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta12’
‘t12’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta13’
‘t13’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta14’
‘t14’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta15’
‘t15’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta16’
‘t16’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta17’
‘t17’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta18’
‘t18’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta19’
‘t19’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta20’
‘t20’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta21’
‘t21’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta22’
‘t22’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta23’
‘t23’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta24’
‘t24’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta25’
‘t25’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta26’
‘t26’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta27’
‘t27’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta28’
‘t28’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta29’
‘t29’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta30’
‘t30’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta31’
‘t31’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta32’
‘t32’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta33’
‘t33’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta34’
‘t34’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta35’
‘t35’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta36’
‘t36’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta37’
‘t37’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta38’
‘t38’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta39’
‘t39’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta40’
‘t40’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta41’
‘t41’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta42’
‘t42’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta43’
‘t43’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta44’
‘t44’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta45’
‘t45’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta46’
‘t46’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta47’
‘t47’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta48’
‘t48’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta49’
‘t49’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta50’
‘t50’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta51’
‘t51’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta52’
‘t52’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta53’
‘t53’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta54’
‘t54’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta55’
‘t55’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta56’
‘t56’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta57’
‘t57’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta58’
‘t58’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta59’
‘t59’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta60’
‘t60’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta61’
‘t61’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta62’
‘t62’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta63’
‘t63’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta64’
‘t64’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta65’
‘t65’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta66’
‘t66’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta67’
‘t67’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta68’
‘t68’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta69’
‘t69’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta70’
‘t70’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta71’
‘t71’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta72’
‘t72’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta73’
‘t73’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta74’
‘t74’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta75’
‘t75’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta76’
‘t76’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta77’
‘t77’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta78’
‘t78’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta79’
‘t79’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta80’
‘t80’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta81’
‘t81’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta82’
‘t82’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta83’
‘t83’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta84’
‘t84’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta85’
‘t85’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta86’
‘t86’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta87’
‘t87’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta88’
‘t88’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta89’
‘t89’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta90’
‘t90’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta91’
‘t91’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta92’
‘t92’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta93’
‘t93’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta94’
‘t94’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta95’
‘t95’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta96’
‘t96’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta97’
‘t97’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta98’
‘t98’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta99’
‘t99’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta100’
‘t100’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘TRUE’
‘TRUE’
‘spde2’
Number of hyperparmeters are 100.
‘theta1’
‘t1’
‘0’
‘FALSE’
‘mvnorm’
‘1 1’
'function(x) x
'
'function(x) x
'
‘theta2’
‘t2’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta3’
‘t3’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta4’
‘t4’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta5’
‘t5’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta6’
‘t6’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta7’
‘t7’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta8’
‘t8’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta9’
‘t9’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta10’
‘t10’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta11’
‘t11’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta12’
‘t12’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta13’
‘t13’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta14’
‘t14’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta15’
‘t15’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta16’
‘t16’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta17’
‘t17’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta18’
‘t18’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta19’
‘t19’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta20’
‘t20’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta21’
‘t21’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta22’
‘t22’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta23’
‘t23’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta24’
‘t24’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta25’
‘t25’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta26’
‘t26’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta27’
‘t27’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta28’
‘t28’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta29’
‘t29’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta30’
‘t30’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta31’
‘t31’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta32’
‘t32’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta33’
‘t33’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta34’
‘t34’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta35’
‘t35’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta36’
‘t36’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta37’
‘t37’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta38’
‘t38’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta39’
‘t39’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta40’
‘t40’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta41’
‘t41’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta42’
‘t42’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta43’
‘t43’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta44’
‘t44’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta45’
‘t45’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta46’
‘t46’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta47’
‘t47’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta48’
‘t48’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta49’
‘t49’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta50’
‘t50’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta51’
‘t51’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta52’
‘t52’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta53’
‘t53’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta54’
‘t54’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta55’
‘t55’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta56’
‘t56’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta57’
‘t57’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta58’
‘t58’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta59’
‘t59’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta60’
‘t60’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta61’
‘t61’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta62’
‘t62’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta63’
‘t63’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta64’
‘t64’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta65’
‘t65’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta66’
‘t66’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta67’
‘t67’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta68’
‘t68’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta69’
‘t69’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta70’
‘t70’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta71’
‘t71’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta72’
‘t72’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta73’
‘t73’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta74’
‘t74’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta75’
‘t75’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta76’
‘t76’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta77’
‘t77’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta78’
‘t78’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta79’
‘t79’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta80’
‘t80’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta81’
‘t81’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta82’
‘t82’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta83’
‘t83’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta84’
‘t84’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta85’
‘t85’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta86’
‘t86’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta87’
‘t87’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta88’
‘t88’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta89’
‘t89’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta90’
‘t90’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta91’
‘t91’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta92’
‘t92’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta93’
‘t93’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta94’
‘t94’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta95’
‘t95’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta96’
‘t96’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta97’
‘t97’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta98’
‘t98’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta99’
‘t99’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘theta100’
‘t100’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘TRUE’
‘TRUE’
‘spde3’
Number of hyperparmeters are 1.
‘precision’
‘prec’
‘4’
‘FALSE’
‘wishart1d’
‘2 1e-04’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘TRUE’
‘iid123d’
Number of hyperparmeters are 3.
‘log precision1’
‘prec1’
‘4’
‘FALSE’
‘wishart2d’
‘4 1 1 0’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision2’
‘prec2’
‘4’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘logit correlation’
‘cor’
‘4’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘FALSE’
‘FALSE’
‘TRUE’
‘1’
‘1 2’
‘2’
‘TRUE’
‘TRUE’
‘iid123d’
Number of hyperparmeters are 6.
‘log precision1’
‘prec1’
‘4’
‘FALSE’
‘wishart3d’
‘7 1 1 1 0 0 0’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision2’
‘prec2’
‘4’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision3’
‘prec3’
‘4’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘logit correlation12’
‘cor12’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘logit correlation13’
‘cor13’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘logit correlation23’
‘cor23’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘FALSE’
‘FALSE’
‘TRUE’
‘1’
‘1 2 3’
‘3’
‘TRUE’
‘TRUE’
‘iid123d’
Number of hyperparmeters are 10.
‘log precision1’
‘prec1’
‘4’
‘FALSE’
‘wishart4d’
‘11 1 1 1 1 0 0 0 0 0 0’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision2’
‘prec2’
‘4’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision3’
‘prec3’
‘4’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision4’
‘prec4’
‘4’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘logit correlation12’
‘cor12’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘logit correlation13’
‘cor13’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘logit correlation14’
‘cor14’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘logit correlation23’
‘cor23’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘logit correlation24’
‘cor24’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘logit correlation34’
‘cor34’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘FALSE’
‘FALSE’
‘TRUE’
‘1’
‘1 2 3 4’
‘4’
‘TRUE’
‘TRUE’
‘iid123d’
Number of hyperparmeters are 15.
‘log precision1’
‘prec1’
‘4’
‘FALSE’
‘wishart5d’
‘16 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision2’
‘prec2’
‘4’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision3’
‘prec3’
‘4’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision4’
‘prec4’
‘4’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision5’
‘prec5’
‘4’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘logit correlation12’
‘cor12’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘logit correlation13’
‘cor13’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘logit correlation14’
‘cor14’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘logit correlation15’
‘cor15’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘logit correlation23’
‘cor23’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘logit correlation24’
‘cor24’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘logit correlation25’
‘cor25’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘logit correlation34’
‘cor34’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘logit correlation35’
‘cor35’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘logit correlation45’
‘cor45’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘FALSE’
‘FALSE’
‘TRUE’
‘1’
‘1 2 3 4 5’
‘5’
‘TRUE’
‘TRUE’
‘iid123d’
Number of hyperparmeters are 3.
‘log precision1’
‘prec1’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision2’
‘prec2’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘correlation’
‘cor’
‘4’
‘FALSE’
‘normal’
‘0 0.15’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘1 2’
‘2’
‘TRUE’
‘TRUE’
‘iid123d’
Number of hyperparmeters are 1.
‘log precision’
‘prec’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘TRUE’
‘TRUE’
‘z’
‘experimental’
Number of hyperparmeters are 1.
‘log precision’
‘prec’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘TRUE’
‘TRUE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘TRUE’
‘rw2d’
Number of hyperparmeters are 2.
‘log precision’
‘prec’
‘pc.prec’
‘1 0.01’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘logit phi’
‘phi’
‘pc’
‘0.5 -1’
‘3’
‘FALSE’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘TRUE’
‘TRUE’
‘TRUE’
‘2’
‘2’
‘NULL’
‘FALSE’
‘TRUE’
‘experimental’
‘rw2diid’
Number of hyperparmeters are 2.
‘log precision’
‘prec’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘rho’
‘rho’
‘0’
‘FALSE’
‘normal’
‘0 10’
'function(x) log(x/(1-x))
'
'function(x) 1/(1+exp(-x))
'
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘TRUE’
‘TRUE’
‘slm’
‘experimental’
Number of hyperparmeters are 2.
‘log precision’
‘prec’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log range’
‘range’
‘2’
‘FALSE’
‘loggamma’
‘1 0.01’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘TRUE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘TRUE’
‘matern2d’
Number of hyperparmeters are 1.
‘beta’
‘b’
‘1’
‘TRUE’
‘normal’
‘1 10’
'function(x, REPLACE.ME.low, REPLACE.ME.high) {}
' if (all(is.infinite(c(low, high))) || low == high) {}
return (x)
else if (all(is.finite(c(low, high)))) {} stopifnot(low < high)
return (log( - (low - x)/(high -x)))
else if (is.finite(low) && is.infinite(high) && high > low) {} return (log(x-low))
else {} stop("Condition not yet implemented")
'function(x, REPLACE.ME.low, REPLACE.ME.high) {}
' if (all(is.infinite(c(low, high))) || low == high) {}
return (x)
else if (all(is.finite(c(low, high)))) {} stopifnot(low < high)
return (low + exp(x)/(1+exp(x)) * (high - low))
else if (is.finite(low) && is.infinite(high) && high > low) {} return (low + exp(x))
else {} stop("Condition not yet implemented")
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘NA’
Number of hyperparmeters are 1.
‘beta’
‘b’
‘1’
‘FALSE’
‘normal’
‘1 10’
'function(x, REPLACE.ME.low, REPLACE.ME.high) {}
' if (all(is.infinite(c(low, high))) || low == high) {}
stopifnot(low < high)
return (x)
else if (all(is.finite(c(low, high)))) {} stopifnot(low < high)
return (log( - (low - x)/(high -x)))
else if (is.finite(low) && is.infinite(high) && high > low) {} return (log(x-low))
else {} stop("Condition not yet implemented")
'function(x, REPLACE.ME.low, REPLACE.ME.high) {}
' if (all(is.infinite(c(low, high))) || low == high) {}
stopifnot(low < high)
return (x)
else if (all(is.finite(c(low, high)))) {} stopifnot(low < high)
return (low + exp(x)/(1+exp(x)) * (high - low))
else if (is.finite(low) && is.infinite(high) && high > low) {} return (low + exp(x))
else {} stop("Condition not yet implemented")
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘clinear’
Number of hyperparmeters are 3.
‘beta’
‘b’
‘1’
‘FALSE’
‘normal’
‘1 10’
'function(x) x
'
'function(x) x
'
‘loghalflife’
‘halflife’
‘3’
‘FALSE’
‘loggamma’
‘3 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘logshape’
‘shape’
‘0’
‘FALSE’
‘loggamma’
‘10 10’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘experimental’
‘sigm’
Number of hyperparmeters are 3.
‘beta’
‘b’
‘1’
‘FALSE’
‘normal’
‘1 10’
'function(x) x
'
'function(x) x
'
‘loghalflife’
‘halflife’
‘3’
‘FALSE’
‘loggamma’
‘3 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘logshape’
‘shape’
‘0’
‘FALSE’
‘loggamma’
‘10 10’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘experimental’
‘sigm’
Valid models in this section are:
Number of hyperparmeters are 1.
‘logit correlation’
‘rho’
‘1’
‘FALSE’
‘normal’
‘0 0.2’
'function(x, REPLACE.ME.ngroup) log((1+x*(ngroup-1))/(1-x))
'
'function(x, REPLACE.ME.ngroup) (exp(x)-1)/(exp(x) + ngroup -1)
'
Number of hyperparmeters are 1.
‘logit correlation’
‘rho’
‘2’
‘FALSE’
‘normal’
‘0 0.15’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
Number of hyperparmeters are 11.
‘log precision’
‘prec’
‘0’
‘TRUE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘pacf1’
‘pacf1’
‘2’
‘FALSE’
‘mvnorm’
‘0 0.15’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘pacf2’
‘pacf2’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘pacf3’
‘pacf3’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘pacf4’
‘pacf4’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘pacf5’
‘pacf5’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘pacf6’
‘pacf6’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘pacf7’
‘pacf7’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘pacf8’
‘pacf8’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘pacf9’
‘pacf9’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘pacf10’
‘pacf10’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
Number of hyperparmeters are 1.
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘0’
‘TRUE’
'function(x) log(x)
'
'function(x) exp(x)
'
Number of hyperparmeters are 1.
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘0’
‘TRUE’
'function(x) log(x)
'
'function(x) exp(x)
'
Number of hyperparmeters are 1.
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘0’
‘TRUE’
'function(x) log(x)
'
'function(x) exp(x)
'
Number of hyperparmeters are 1.
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘0’
‘TRUE’
'function(x) log(x)
'
'function(x) exp(x)
'
Valid models in this section are:
Number of hyperparmeters are 1.
‘log precision’
‘prec’
‘loggamma’
‘1 0.01’
‘0’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
Valid models in this section are:
Number of hyperparmeters are 0.
Number of hyperparmeters are 0.
Number of hyperparmeters are 0.
Number of hyperparmeters are 0.
Number of hyperparmeters are 0.
Number of hyperparmeters are 0.
Number of hyperparmeters are 0.
Number of hyperparmeters are 2.
‘sensitivity’
‘sens’
‘logitbeta’
‘10 5’
‘1’
‘FALSE’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘specificity’
‘spec’
‘logitbeta’
‘10 5’
‘1’
‘FALSE’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘NA’
Number of hyperparmeters are 1.
‘beta’
‘b’
‘normal’
‘0 100’
‘0’
‘TRUE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘logoffset’
Number of hyperparmeters are 1.
‘beta’
‘b’
‘normal’
‘0 100’
‘0’
‘FALSE’
'function(x) x
'
'function(x) x
'
‘NA’
Number of hyperparmeters are 1.
‘beta’
‘b’
‘normal’
‘0 10’
‘0’
‘FALSE’
'function(x) x
'
'function(x) x
'
‘NA’
Number of hyperparmeters are 11.
‘log precision’
‘prec’
‘0’
‘FALSE’
‘loggamma’
‘1 1’
'function(x) x
'
'function(x) x
'
‘beta1’
‘beta1’
‘0’
‘FALSE’
‘mvnorm’
‘0 100’
'function(x) x
'
'function(x) x
'
‘beta2’
‘beta2’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘beta3’
‘beta3’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘beta4’
‘beta4’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘beta5’
‘beta5’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘beta6’
‘beta6’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘beta7’
‘beta7’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘beta8’
‘beta8’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘beta9’
‘beta9’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘beta10’
‘beta10’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘NA’
Valid models in this section are:
Number of hyperparmeters are 1.
‘log precision’
‘prec’
‘11’
‘TRUE’
‘loggamma’
‘1 1e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
Valid models in this section are:
Number of hyperparmeters are 1.
‘log precision’
‘prec’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
Number of hyperparmeters are 1.
‘log precision’
‘prec’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
Valid models in this section are:
Number of hyperparmeters are 0.
Number of hyperparmeters are 2.
‘overdispersion’
‘phi’
‘0’
‘FALSE’
‘loggamma’
‘1 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘p’
‘p’
‘1’
‘TRUE’
‘normal’
‘1 100’
'function(x) x
'
'function(x) x
'
‘FALSE’
‘TRUE’
‘default log logoffset’
‘gpoisson’
‘experimental’
Number of hyperparmeters are 0.
Number of hyperparmeters are 2.
‘sensitivity’
‘s’
‘3’
‘FALSE’
‘logitbeta’
‘2 1’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘specificity’
‘e’
‘3’
‘FALSE’
‘logitbeta’
‘2 1’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘experimental’
‘FALSE’
‘TRUE’
‘default logit probit cloglog log’
‘testbinomial1’
Number of hyperparmeters are 1.
‘precision parameter’
‘prec’
‘4.60517018598809’
‘FALSE’
‘loggamma’
‘1 0.01’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘default log’
‘gamma’
Number of hyperparmeters are 1.
‘log alpha’
‘alpha’
‘0’
‘FALSE’
‘loggamma’
‘10 10’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘default log’
‘experimental’
‘gammacount’
Number of hyperparmeters are 2.
‘precision parameter’
‘prec’
‘0’
‘FALSE’
‘loggamma’
‘1 0.001’
'function(x) log(x)
'
'function(x) exp(x)
'
‘quantile’
‘q’
‘0.5’
‘TRUE’
‘invalid’
''
'function(x) x
'
'function(x) x
'
‘FALSE’
‘FALSE’
‘default logit’
‘kumar’
Number of hyperparmeters are 1.
‘precision parameter’
‘phi’
‘2.30258509299405’
‘FALSE’
‘loggamma’
‘1 0.1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘default logit probit cloglog’
‘beta’
Number of hyperparmeters are 1.
‘overdispersion’
‘rho’
‘0’
‘FALSE’
‘gaussian’
‘0 0.4’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘FALSE’
‘TRUE’
‘default logit probit cloglog’
‘betabinomial’
Number of hyperparmeters are 0.
Number of hyperparmeters are 1.
‘size’
‘size’
‘2.30258509299405’
‘FALSE’
‘loggamma’
‘1 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘TRUE’
‘default log logoffset’
‘nbinomial’
Number of hyperparmeters are 1.
‘log precision’
‘prec’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘default logit probit cloglog’
‘simplex’
Number of hyperparmeters are 1.
‘log precision’
‘prec’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘default identity logit log’
‘gaussian’
Number of hyperparmeters are 1.
‘log precision’
‘prec’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘default identity’
‘gaussian’
Number of hyperparmeters are 1.
‘log precision parameter’
‘prec’
‘2’
‘FALSE’
‘loggamma’
‘1 0.01’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘default tan’
‘circular-normal’
‘experimental’
Number of hyperparmeters are 1.
‘log precision parameter’
‘prec’
‘2’
‘FALSE’
‘loggamma’
‘1 0.005’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘FALSE’
‘FALSE’
‘default tan’
‘wrapped-cauchy’
‘disabled’
Number of hyperparmeters are 2.
‘logshape’
‘shape’
‘0’
‘FALSE’
‘loggamma’
‘100 100’
'function(x) log(x)
'
'function(x) exp(x)
'
‘lograte’
‘rate’
‘0’
‘FALSE’
‘loggamma’
‘100 100’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘default identity’
‘iidgamma’
‘experimental’
Number of hyperparmeters are 2.
‘log.a’
‘a’
‘1’
‘FALSE’
‘loggamma’
‘1 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log.b’
‘b’
‘1’
‘FALSE’
‘loggamma’
‘1 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘default logit’
‘iidlogitbeta’
‘experimental’
Number of hyperparmeters are 1.
‘log precision’
‘prec’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘default identity’
‘loggammafrailty’
Number of hyperparmeters are 1.
‘log precision’
‘prec’
‘1’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘default identity’
‘logistic’
Number of hyperparmeters are 2.
‘inverse.scale’
‘iscale’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
‘skewness’
‘skew’
‘4’
‘FALSE’
‘gaussian’
‘0 10’
‘FALSE’
‘FALSE’
‘default identity’
‘sn’
Number of hyperparmeters are 2.
‘log inverse scale’
‘iscale’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
‘logit skewness’
‘skew’
‘0’
‘FALSE’
‘gaussian’
‘0 10’
'function(x, shape.max = 1) log((1+x/shape.max)/(1-x/shape.max))
'
'function(x, shape.max = 1) shape.max*(2*exp(x)/(1+exp(x))-1)
'
‘FALSE’
‘FALSE’
‘default identity’
‘sn’
Number of hyperparmeters are 2.
‘log precision’
‘prec’
‘1’
‘FALSE’
‘loggamma’
‘1 5e-05’
‘logit skewness’
‘skew’
‘0’
‘FALSE’
‘gaussian’
‘0 10’
'function(x) log((1+x)/(1-x))
'
'function(x) (2*exp(x)/(1+exp(x))-1)
'
‘FALSE’
‘FALSE’
‘default identity’
‘experimental’
‘sn2’
Number of hyperparmeters are 2.
‘log precision’
‘prec’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘gev parameter’
‘gev’
‘0’
‘FALSE’
‘gaussian’
‘0 25’
'function(x) x
'
'function(x) x
'
‘FALSE’
‘FALSE’
‘default identity’
‘experimental’
‘gev’
Number of hyperparmeters are 1.
‘log precision’
‘prec’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘default identity’
‘disabled’
‘laplace’
Number of hyperparmeters are 1.
‘log precision’
‘prec’
‘2’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘TRUE’
‘FALSE’
‘default identity’
‘lognormal’
Number of hyperparmeters are 0.
Number of hyperparmeters are 0.
Number of hyperparmeters are 1.
‘log alpha’
‘a’
‘0’
‘FALSE’
‘loggamma’
‘25 25’
'function(x) log(x)
'
'function(x) exp(x)
'
‘TRUE’
‘FALSE’
‘default log’
‘weibull’
Number of hyperparmeters are 1.
‘log alpha’
‘alpha’
‘1’
‘FALSE’
‘loggamma’
‘25 25’
'function(x) log(x)
'
'function(x) exp(x)
'
‘TRUE’
‘FALSE’
‘default log’
‘loglogistic’
Number of hyperparmeters are 2.
‘log alpha’
‘a’
‘4’
‘FALSE’
‘loggamma’
‘25 25’
'function(x) log(x)
'
'function(x) exp(x)
'
‘logit probability’
‘prob’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘TRUE’
‘FALSE’
‘default log’
‘NA’
Number of hyperparmeters are 1.
‘log precision’
‘prec’
‘500’
‘TRUE’
‘loggamma’
‘1 0.005’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘default log’
‘stochvolgaussian’
Number of hyperparmeters are 1.
‘log degrees of freedom’
‘dof’
‘4’
‘FALSE’
‘loggamma’
‘1 0.5’
'function(x) log(x-2)
'
'function(x) 2+exp(x)
'
‘FALSE’
‘FALSE’
‘default log’
‘stochvolt’
Number of hyperparmeters are 2.
‘skewness’
‘skew’
‘0’
‘FALSE’
‘gaussian’
‘0 10’
'function(x) x
'
'function(x) x
'
‘shape’
‘shape’
‘0’
‘FALSE’
‘loggamma’
‘1 0.5’
'function(x) log(x-1)
'
'function(x) 1+exp(x)
'
‘FALSE’
‘FALSE’
‘default log’
‘stochvolnig’
Number of hyperparmeters are 1.
‘logit probability’
‘prob’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘FALSE’
‘FALSE’
‘default log’
‘zeroinflated’
Number of hyperparmeters are 1.
‘logit probability’
‘prob’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘FALSE’
‘FALSE’
‘default log’
‘zeroinflated’
Number of hyperparmeters are 1.
‘log alpha’
‘a’
‘0.693147180559945’
‘FALSE’
‘gaussian’
‘0.693147180559945 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘default log’
‘zeroinflated’
Number of hyperparmeters are 2.
‘overdispersion’
‘rho’
‘0’
‘FALSE’
‘gaussian’
‘0 0.4’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘logit probability’
‘prob’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘FALSE’
‘TRUE’
‘default logit probit cloglog’
‘zeroinflated’
Number of hyperparmeters are 2.
‘overdispersion’
‘rho’
‘0’
‘FALSE’
‘gaussian’
‘0 0.4’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘logit probability’
‘prob’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘FALSE’
‘TRUE’
‘default logit probit cloglog’
‘zeroinflated’
Number of hyperparmeters are 1.
‘logit probability’
‘prob’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘FALSE’
‘FALSE’
‘default logit probit cloglog’
‘zeroinflated’
Number of hyperparmeters are 1.
‘logit probability’
‘prob’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘FALSE’
‘FALSE’
‘default logit probit cloglog’
‘zeroinflated’
Number of hyperparmeters are 1.
‘alpha’
‘alpha’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘default logit probit cloglog’
‘zeroinflated’
Number of hyperparmeters are 2.
‘alpha1’
‘alpha1’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x)
'
'function(x) exp(x)
'
‘alpha2’
‘alpha2’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘default logit probit cloglog’
‘NA’
Number of hyperparmeters are 2.
‘log alpha’
‘a’
‘0.693147180559945’
‘FALSE’
‘gaussian’
‘0.693147180559945 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘beta’
‘b’
‘0’
‘FALSE’
‘gaussian’
‘0 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘default logit probit cloglog’
‘zeroinflated’
Number of hyperparmeters are 2.
‘log size’
‘size’
‘2.30258509299405’
‘FALSE’
‘loggamma’
‘1 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘logit probability’
‘prob’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘FALSE’
‘FALSE’
‘default log’
‘zeroinflated’
Number of hyperparmeters are 2.
‘log size’
‘size’
‘2.30258509299405’
‘FALSE’
‘loggamma’
‘1 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘logit probability’
‘prob’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘FALSE’
‘FALSE’
‘default log’
‘zeroinflated’
Number of hyperparmeters are 3.
‘log size’
‘size’
‘2.30258509299405’
‘FALSE’
‘loggamma’
‘1 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘logit probability 1’
‘prob1’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘logit probability 2’
‘prob2’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘experimental’
‘FALSE’
‘FALSE’
‘default log’
‘zeroinflated’
Number of hyperparmeters are 3.
‘log size 1’
‘size1’
‘2.30258509299405’
‘FALSE’
‘loggamma’
‘1 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log size 2’
‘size2’
‘2.30258509299405’
‘FALSE’
‘loggamma’
‘1 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘logit probability’
‘prob’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘experimental’
‘FALSE’
‘FALSE’
‘default log’
‘zeroinflated’
Number of hyperparmeters are 2.
‘log size’
‘size’
‘2.30258509299405’
‘FALSE’
‘loggamma’
‘1 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log alpha’
‘a’
‘0.693147180559945’
‘FALSE’
‘gaussian’
‘2 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘default log’
‘zeroinflated’
Number of hyperparmeters are 2.
‘log precision’
‘prec’
‘0’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log degrees of freedom’
‘dof’
‘5’
‘FALSE’
‘loggamma’
‘1 0.5’
'function(x) log(x-2)
'
'function(x) 2+exp(x)
'
‘FALSE’
‘FALSE’
‘default identity’
‘student-t’
Number of hyperparmeters are 11.
‘log degrees of freedom’
‘dof’
‘4’
‘FALSE’
‘loggamma’
‘1 0.01’
'function(x) log(x-5)
'
'function(x) 5+exp(x)
'
‘log precision1’
‘prec1’
‘2’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision2’
‘prec2’
‘2’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision3’
‘prec3’
‘2’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision4’
‘prec4’
‘2’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision5’
‘prec5’
‘2’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision6’
‘prec6’
‘2’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision7’
‘prec7’
‘2’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision8’
‘prec8’
‘2’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision9’
‘prec9’
‘2’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘log precision10’
‘prec10’
‘2’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘default identity’
‘tstrata’
Number of hyperparmeters are 0.
Valid models in this section are:
Number of parameters in the prior = 2
Number of parameters in the prior = 2
Number of parameters in the prior = 2
Number of parameters in the prior = 4
Number of parameters in the prior = 7
Number of parameters in the prior = 11
Number of parameters in the prior = 16
Number of parameters in the prior = 2
Number of parameters in the prior = 2
Number of parameters in the prior = 2
Number of parameters in the prior = 2
Number of parameters in the prior = 0
Number of parameters in the prior = 0
Number of parameters in the prior = 0
Number of parameters in the prior = -1
Number of parameters in the prior = 1
Number of parameters in the prior = 0
Number of parameters in the prior = 0
Number of parameters in the prior = 2
Number of parameters in the prior = 2
Number of parameters in the prior = 2
Number of parameters in the prior = 2
Number of parameters in the prior = 2
Number of parameters in the prior = 2
Number of parameters in the prior = 4
Number of parameters in the prior = 2
Number of parameters in the prior = 0
Number of parameters in the prior = 0
Number of parameters in the prior = -1
Number of parameters in the prior = -1
Valid models in this section are:
Number of hyperparmeters are 1.
‘log precision’
‘prec’
‘0’
‘TRUE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘NA’
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | ## How to set hyperparameters to pass as the argument 'hyper'. This
## format is compatible with the old style (using 'initial', 'fixed',
## 'prior', 'param'), but the new style using 'hyper' take preceedence
## over the old style. The two styles can also be mixed. The old style
## might be removed from the code in the future...
## Only a subset need to be given
hyper = list(theta = list(initial = 2))
## The `name' can be used instead of 'theta', or 'theta1', 'theta2',...
hyper = list(precision = list(initial = 2))
hyper = list(precision = list(prior = "flat", param = numeric(0)))
hyper = list(theta2 = list(initial=3), theta1 = list(prior = "gaussian"))
## The 'short.name' can be used instead of 'name'
hyper = list(rho = list(param = c(0,1)))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.