#' Functional connectivity CovBat
#'
#' Applies CovBat to vectorized covariance or correlation matrices.
#'
#' @param x *p x p x n* covariance or correlation matrices where *p* is the number
#' of ROIs and *n* is the number of subjects.
#' @param bat Factor (or object coercible by \link[base]{as.factor} to a
#' factor) of length *n* designating batch IDs.
#' @param mod Optional design matrix of covariates to preserve, usually from
#' the output of \link[stats]{model.matrix}.
#' @param eb If `TRUE``, uses ComBat model with empirical Bayes for mean
#' and variance harmonization.
#' @param percent.var Numeric. The number of harmonized principal component
#' scores is selected to explain this proportion of the variance.
#' @param to.corr If `TRUE`, uses \link[stats]{cov2cor} to convert input
#' matrices into correlation matrices
#' @param out.pd Whether input should be forced to be positive definite using
#' \link[Matrix]{nearPD}. This step is unnecessary for many downstream
#' network analyses so defaults to `FALSE`.
#' @param fisher Whether to Fisher-transform the off-diagonal elements before
#' applying CovBat, highly recommended that this be set to `TRUE`.
#'
#' @return
#' @import CovBat
#' @export
#'
#' @examples
fcCovBat = function(x, bat, mod = NULL, eb = TRUE, percent.var = 0.95,
to.corr = TRUE, out.pd = FALSE, fisher = TRUE) {
N <- dim(x)[3]
dnames <- dimnames(x)
bat <- as.factor(bat)
bat <- droplevels(bat)
if (to.corr) {x <- array(apply(x, 3, cov2cor), dim(x))}
if (fisher) {
vec <- atanh(t(apply(x, 3, function(m) c(m[lower.tri(m)]))))
cov_out <- covbat(t(vec), bat, mod = mod, eb = eb, percent.var = percent.var)
cov_dat <- tanh(t(cov_out$dat.covbat))
} else {
vec <- t(apply(x, 3, function(m) c(m[lower.tri(m)])))
cov_out <- covbat(t(vec), bat, mod = mod, eb = eb, percent.var = percent.var)
cov_dat <- t(cov_out$dat.covbat)
}
out <- array(0, dim = dim(x))
for (i in 1:N) {
out[,,i][lower.tri(out[,,i])] <- cov_dat[i,]
out[,,i] <- out[,,i] + t(out[,,i])
diag(out[,,i]) <- diag(x[,,i])
}
if (out.pd) {out <- array(apply(out, 3, function(x)
as.matrix(nearPD(x, corr = TRUE)$mat)), dim(out))}
dimnames(out) <- dnames
list(dat.out = out, covbat.out = cov_out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.