Description Usage Arguments Value Examples
View source: R/generate_all_models.R
Generate all error models for each trinucleotide variant context. Fits error distribution with either an Exp or Weibull distribution depending on the overall distribution of non-reference alleles. If the most frequent non-reference allele count is 1 (typically at <10,000 sequencing depth) an Exponential distribution will be fitted and if it is greater than 1 (seen at ultra-deep read depths) a Weibull distribution will be fitted.
1 | generate_all_models(sample, model = "auto")
|
sample |
|
model |
Specifying which error model ("exp" or "weibull") to fit. Default is "auto". |
This function returns a dataframe
with the following information:
FlankingSeqGroup
Model Used (Exp or Weibull)
Model parameter 1
Model parameter 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | ## Not run:
# Get flagged alleles and cosmic mutations
heme_COSMIC <- load_cosmic_mutations(cosmic_mutations_path = "./heme_COSMIC.csv")
flagged_alleles <- get_flagged_alleles(all_samplele_names, all_samplele_paths,
exclude_cosmic_mutations = TRUE, cosmic_mutations = heme_COSMIC, cosmic_mut_frequency = 3)
# Load and annotate samplele
sample <- load_as_VRanges(sample_name = "pt123",
samplele_path = "./patient_123_pileup2cns", genome = "hg19", metadata = TRUE)
sample <- sequence_context(sample)
library(MafDb.gnomADex.r2.1.hs37d5)
annotated_sample <- annotate_MAF(varscan_output = variants,
MAF_database = MafDb.gnomADex.r2.1.hs37d5, genome = "hg19")
# Filter model input
sample_model_input <- filter_model_input(model_input = annotated_sample,
flagged_alleles = flagged_alleles, filter_cosmic_mutations = TRUE,
cosmic_mutations = heme_COSMIC, cosmic_mut_frequency = 10)
# Generate the error models for this samplele
sample_models <- generate_all_models(sample = sample_model_input, plots = FALSE)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.