## Purpose: LRT based method of estimating the mixture complexity (as well as
## the weights and component parameters) returning a 'paramEst' object
## (using bootstrap)
mix.lrt <- function(obj, j.max = 10, B = 100, quantile = 0.95, control = c(trace = 0), ...){
# check relevant inputs
.input.checks.functions(obj, j.max = j.max, quantile = quantile, Hankel = FALSE,
param = TRUE)
# get standard variables
variable_list <- .get.list(obj)
list2env(variable_list, envir = environment())
likelihood0 <- .get.negloglik.dist.0(dat, dist, formals.dist, ndistparams, dist_call)
likelihood <- .get.negloglik.dist(dat = dat, dist = dist, formals.dist = formals.dist,
ndistparams = ndistparams, dist_call)
j0 <- 0
repeat{
j0 <- j0 + 1 # current complexity estimate
j1 <- j0 + 1
if(j0 > 1){ # if j1 was calculated in the last interation, pass it over to j0...
mle.est0 <- mle.est1
L0 <- L1
conv.j0 <- conv.j1
values.j0 <- values.j1
# also need to pass over the restrictions as they will be used in the bootstrap
ineq.j0 <- ineq.j1
lx.j0 <- lx.j1
ux.j0 <- ux.j1
} else { # ... or calculate j0 directly if j0 = 1 (j1 has not been calculated yet)
# in this case we already know w = 1 (single component mixture)
restrictions.j0 <- .get.restrictions(j = j0, ndistparams = ndistparams, lower = lower,
upper = upper)
ineq.j0 <- restrictions.j0$ineq
lx.j0 <- restrictions.j0$lx
ux.j0 <- restrictions.j0$ux
if (!is.null(MLE.function)){ # Calculate MLE via the MLE function
mle.est0 <- sapply(MLE.function, function(fun) fun(dat))
L0 <- likelihood0(mle.est0)
.printresultsMLE(mle.est0, dist, formals.dist, ndistparams, likelihood0)
conv.j0 <- NULL
values.j0 <- L0
} else { # Calculate MLE of a j component mixture numerically
initial.j0 <- .get.initialvals(dat, j0, ndistparams, MLE.function, lower, upper, dist,
formals.dist)
opt <- solnp(initial.j0, fun = likelihood0, ineqfun = ineq.j0, ineqLB = 0, ineqUB = 1,
LB = lx.j0, UB = ux.j0, control = control)
.printresults(opt, j0, dist, formals.dist, ndistparams)
mle.est0 <- opt$pars
L0 <- likelihood0(mle.est0)
conv.j0 <- opt$convergence
values.j0 <- opt$values
}
}
# optimization for j1. Starts from j1 = 2 so we always need to include weight
# restrictions in optimization
restrictions.j1 <- .get.restrictions(j = j1, ndistparams = ndistparams, lower = lower,
upper = upper)
ineq.j1 <- restrictions.j1$ineq
lx.j1 <- restrictions.j1$lx
ux.j1 <- restrictions.j1$ux
initial.j1 <- .get.initialvals(dat, j1, ndistparams, MLE.function, lower, upper, dist,
formals.dist)
opt <- solnp(initial.j1, fun = likelihood, ineqfun = ineq.j1, ineqLB = 0, ineqUB = 1,
LB = lx.j1, UB = ux.j1, control = control)
mle.est1 <- opt$pars <- .augment.pars(opt$pars, j1)
L1 <- opt$values[length(opt$values)] <- likelihood(opt$pars)
conv.j1 <- opt$convergence
values.j1 <- opt$values
.printresults(opt, j1, dist, formals.dist, ndistparams)
LRT <- 2*(L0 - L1)
# parameters used for parametric bootstrap and corresponding 'Mix' object
param.list.boot <- .get.bootstrapparams(formals.dist = formals.dist, ndistparams = ndistparams,
mle.est = mle.est0, j = j0)
Mix.mle <- Mix(dist = dist, w = param.list.boot$w, theta.list = param.list.boot$theta.list,
name = "Mix.boot")
ran.gen <- function(dat, mle){
rMix(n = length(dat), obj = mle)
}
# counting bootstrap iterations to print progression
bs_iter <- -1
stat <- function(dat){
assign("bs_iter", bs_iter + 1, inherits = TRUE)
if(bs_iter != 0){
# don't include first iteration as this just uses the original data
# to calculate t0
cat(paste("Running bootstrap iteration ", bs_iter, " testing for ", j0,
" components.\n", sep = ""))
} else cat(paste("\n"))
# in the bootstrap we have to calculate the values for j0 and j1 as the bootstrap
# data changes in every iteration (cannot reuse last j1 values as j0)
likelihood_boot <- .get.negloglik.dist(dat = dat, dist = dist, formals.dist = formals.dist,
ndistparams = ndistparams, dist_call)
# calculate optimal parameters for j0
if (j0 == 1){ # already know w = 1 (single component mixture)
likelihood_boot0 <- .get.negloglik.dist.0(dat = dat, dist = dist, formals.dist = formals.dist,
ndistparams = ndistparams, dist_call)
if(!is.null(MLE.function)){ # Calculate MLE via the MLE function
opt.boot0 <- sapply(MLE.function, function(fun) fun(dat))
L0.boot <- likelihood_boot0(opt.boot0)
} else { # Calculate MLE of a j0 = 1 component mixture numerically
initial.boot0 <- .get.initialvals(dat, j0, ndistparams, MLE.function, lower, upper, dist,
formals.dist)
opt.boot0 <- solnp(initial.boot0, fun = likelihood_boot0, LB = lx.j0, UB = ux.j0,
control = control)$values
L0.boot <- opt.boot0[length(opt.boot0)]
}
} else { # need to include weight restrictions in optimization for j0 != 1
initial.boot0 <- .get.initialvals(dat, j0, ndistparams, MLE.function, lower, upper, dist,
formals.dist)
opt.boot0 <- solnp(initial.boot0, fun = likelihood_boot, ineqfun = ineq.j0, ineqLB = 0,
ineqUB = 1, LB = lx.j0, UB = ux.j0, control = control)
opt.boot0$pars <- .augment.pars(opt.boot0$pars, j0)
L0.boot <- likelihood_boot(opt.boot0$pars)
}
# calculate optimal parameters for j1 (always need restrictions since j1
# starts from 2)
initial.boot1 <- .get.initialvals(dat, j1, ndistparams, MLE.function, lower, upper,
dist, formals.dist)
opt.boot1 <- solnp(initial.boot1, fun = likelihood_boot, ineqfun = ineq.j1, ineqLB = 0,
ineqUB = 1, LB = lx.j1, UB = ux.j1, control = control)
opt.boot1$pars <- .augment.pars(opt.boot1$pars, j1)
L1.boot <- likelihood_boot(opt.boot1$pars)
return(2*(L0.boot - L1.boot))
}
bt <- boot(dat, statistic = stat, R = B, sim = "parametric", ran.gen = ran.gen,
mle = Mix.mle, ...)
LRT.boot <- bt$t
qu <- quantile(LRT.boot, quantile)
if(LRT <= qu){
# so that the printed result reflects that the order j.max was actually estimated
# rather than just returned as the default
j.max <- j.max + 1
break
} else if (j0 == j.max){
break
}
}
.return.paramEst(j0, j.max, dat, mle.est0, values.j0, conv.j0, dist, ndistparams, formals.dist,
discrete, MLE.function)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.