# Quick and dirty function to check the Austin parameters -----------------
MC_sampling <- function(sample_size,
alpha,
alpha_0,
beta,
n_covariates){
covariate_data <- 1:n_covariates %>%
purrr::map(~rnorm(sample_size))
names(covariate_data) <- paste0("x_", 1:n_covariates)
covariate_data <- do.call(cbind, covariate_data)
lin_pred <- get_linear_predictor(c(alpha_0, alpha), cbind(rep(1,sample_size), covariate_data))
p_1 <- 1/(1 + exp(-(lin_pred+beta)))
p_0 <- 1/(1 + exp(-(lin_pred)))
gamma <- mean(p_1-p_0)
marginal_prob_treated <- mean(p_1)
marginal_prob_untreated <- mean(p_0)
return(list(gamma = gamma,
marginal_prob_treated = marginal_prob_treated,
marginal_prob_untreated = marginal_prob_untreated))
}
# Parameters from paper ----------------------------------------------------
alpha_dich <- c(rep(log(1.1), 3), rep(log(1.25), 3), rep(log(1.5), 3), log(2))
alpha_0_paper <- log(0.29/0.71)
beta_paper <- 0.9077272
beta_paper_005 <- 0.7836084
beta_paper_01 <- 0.6086645
beta_paper_015 <- 0.4658031
# Marginals with parameters from paper ------------------------------------
test_austin <- MC_sampling(sample_size = 10000,
alpha = alpha_dich,
alpha_0 = log(0.29/0.71),
beta = 0.9077272,
n_covariates = 10)
test_austin$gamma #should be -0.02
test_austin$marginal_prob_treated # should be 0.29 - 0.02
test_austin$marginal_prob_untreated #should be 0.29
# Parameters from binary search -------------------------------------------
parameters_anna <- generate_data(sample_size = 10000,
n_covariates = 10,
n_normal = 10,
alpha = alpha_dich,
pair_cor = 0,
prop_treated = 0.25,
risk_diff = -0.02,
n_iter = 1000,
outcome_type = "binary",
margin_prev = 0.29)
# Marginals with binary search --------------------------------------------
test_anna <- MC_sampling(sample_size = 10000,
alpha = alpha_dich,
alpha_0 = parameters_anna$alpha_0_outcome,
beta = parameters_anna$beta,
n_covariates = 10)
test_anna$gamma #should be -0.02
test_anna$marginal_prob_treated # should be 0.29 - 0.02
test_anna$marginal_prob_untreated #should be 0.29
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.