R/Malliavin_Asian_Greeks.R

Defines functions Malliavin_Asian_Greeks

Documented in Malliavin_Asian_Greeks

#' @title
#' Computes the Greeks of an Asian option with the Malliavin Monte Carlo
#' Method in the Black Scholes model, or for Asian options, also in a Jump
#' Diffusion model
#'
#' @description
#' Asian options are path-dependent.
#' If \eqn{S_t} is the price of the underlying asset at time \eqn{t}, the
#' execution of an Asian option depends on the average price of option,
#' \eqn{\frac{1}{T} \int_0^T S_t dt}, where \eqn{T} is the time-to-maturity of
#' the option.
#' For more details on the definition of Greeks in general see [Greeks].
#'
#' For a description of Malliavin Monte Carlo Methods for Greeks see for example
#' (Hudde & Rüschendorf, 2023).
#'
#' @export
#'
#' @seealso [BS_Malliavin_Asian_Greeks] for a faster computation, but only in
#' the Black Scholes model and with a smaller set of Greeks
#'
#' @import "stats"
#' @import "Rcpp"
#' @importFrom "dqrng" "dqrnorm" "dqset.seed"
#'
#' @param initial_price - initial price of the underlying asset, can also be a
#' vector
#' @param exercise_price - strike price of the option, can also be a vector
#' @param r - risk-free interest rate
#' @param time_to_maturity - time to maturity in years
#' @param volatility - volatility of the underlying asset
#' @param dividend_yield - dividend yield
#' @param payoff - the payoff function, either a string in ("call", "put",
#' "digital_call", "digital_put"), or a function
#' @param greek - the Greek to be calculated
#' @param model - the model to be chosen in ("black_scholes", "jump_diffusion")
#' @param lambda - the lambda of the Poisson process in the jump-diffusion model
#' @param alpha - the alpha in the jump-diffusion model influences the jump size
#' @param jump_distribution - the distribution of the jumps, choose a function
#' which generates random numbers with the desired distribution
#' @param steps - the number of integration steps
#' @param paths - the number of simulated paths
#' @param seed - the seed of the random number generator
#' @param antithetic - if TRUE, antithetic random numbers will be chosen to
#' decrease variance
#'
#' @return Named vector containing the values of the Greeks specified in the
#' parameter \code{greek}.
#'
#' @examples Malliavin_Asian_Greeks(initial_price = 110, exercise_price = 100,
#' r = 0.02, time_to_maturity = 4.5, dividend_yield = 0.015, volatility = 0.22,
#' greek = c("fair_value", "delta", "rho"), payoff = "put")
#'
#' @references
#' Hudde, A., & Rüschendorf, L. (2023). European and Asian Greeks for Exponential Lévy Processes. Methodol Comput Appl Probab, 25 (39). \doi{10.1007/s11009-023-10014-5}
#'

Malliavin_Asian_Greeks <- function(
    initial_price = 100,
    exercise_price = 100,
    r = 0,
    time_to_maturity = 1,
    volatility = 0.3,
    dividend_yield = 0,
    payoff = "call",
    greek = c("fair_value", "delta", "rho", "vega",
              "theta", "gamma"),
    model = "black_scholes",
    lambda = 0.2,
    alpha = 0.3,
    jump_distribution = function(n) stats::rt(n, df = 3),
    steps = round(time_to_maturity*252),
    paths = 10000,
    seed = 1,
    antithetic = FALSE) {

  params <- c("initial_price", "exercise_price", "r", "time_to_maturity",
              "volatility", "dividend_yield")

  param <- params[1]
  vectorized_param <- get(param)

  for (p in params) {
    if ( length(get(p)) >= 2) {
      vectorized_param <- get(p)
      param <- p
      break
    }
  }

  dt <- time_to_maturity/steps

  result <-
    matrix(ncol = length(greek),
           nrow = length(vectorized_param),
           dimnames = list(NULL, greek)) * NA

  ## the payoff function ##

  if (inherits(payoff, "function")) {
    print("custom payoff")
  } else if (payoff == "call") {
    payoff <- function(x, exercise_price) {
      return(pmax(0, x - exercise_price))
    }
    dpayoff <- function(x, exercise_price) {
      return((x > exercise_price) + 0)
    }
  } else if (payoff == "put") {
    payoff <- function(x, exercise_price) {
      return(pmax(0, exercise_price - x))
    }
    dpayoff <- function(x, exercise_price) {
      return(-(x < exercise_price) + 0)
    }
  } else if (payoff == "digital_call") {
    payoff <- function(x, exercise_price) {ifelse(x >= exercise_price, 1, 0)
    }
  } else if (payoff == "digital_put") {
    payoff <- function(x, exercise_price) {ifelse(x <= exercise_price, 1, 0)
    }
  }

  ## the seed is set

  if (!is.na(seed)) {
    dqset.seed(seed)
  }

  if (antithetic) {
    gaussian_random_numbers <- dqrnorm(n = (paths*steps/2), sd = sqrt(dt))
    W <- make_BM(gaussian_random_numbers, paths = paths/2, steps = steps)
    W <- rbind(
      W,
      -W)
  } else {
    gaussian_random_numbers <- dqrnorm(n = paths*steps, sd = sqrt(dt))
    W <- make_BM(gaussian_random_numbers, paths = paths, steps = steps)
  }

  X <- calc_X(W, dt, volatility, r - dividend_yield)

  if (model == "jump_diffusion") {

    Jumps <- c(numeric(paths), rpois(n = steps * paths, lambda = lambda *
                                       dt))
    for (i in which(Jumps != 0)) {
      Jumps[i] <- alpha * sum(jump_distribution(Jumps[i]))
    }
    Jumps <- Jumps %>% matrix(nrow = paths) %>% rowCumsums()
    X <- X * exp(Jumps)

  } # model == "jump_diffusion"

  W_T <- W[, steps + 1]

  X_T <- X[, steps + 1]

  if (length(intersect(greek, c("vega", "vega_d")))) {
    XW <- calc_XW(X, W, steps, paths, dt)
    tXW <- calc_tXW(X, W, steps, paths, dt)
  }

  rm(W)

  ### the calculation of I_{(n)}, the integral \int_0^T t^n X_t dt ###

  I_0 <- calc_I(X, steps, dt)

  if (length(intersect(
    greek,
    c("delta", "delta_d", "theta", "vega", "vega_d", "gamma", "gamma_kombi",
      "rho_d")))) {
    I_1 <- calc_I_1(X, steps, dt)
    I_2 <- calc_I_2(X, steps, dt)
  }

  if ("gamma" %in% greek) {
    I_3 <- calc_I_3(X, steps, dt)
  }

  for (i in 1:length(vectorized_param)) {

    assign(param, vectorized_param[i])

    E <- function(weight) {
      return(exp(-(r - dividend_yield)*time_to_maturity) *
               mean(payoff(initial_price * I_0/time_to_maturity, exercise_price) * weight))
    }

    dE <- function(weight) {
      return(exp(-(r - dividend_yield)*time_to_maturity) *
               mean(dpayoff(initial_price * I_0/time_to_maturity, exercise_price) * weight))
    }

    if ("fair_value" %in% greek) {
      result[i, "fair_value"] <-
        E(1)
    }

    if ("delta" %in% greek) {
      result[i, "delta"] <-
        (1/(volatility * initial_price) *
           (-volatility + I_0/I_1*W_T + volatility*I_0*I_2/(I_1^2))) %>%
        E()
    }

    if ("delta_d" %in% greek) {
      result[i, "delta_d"] <- dE(I_0 / time_to_maturity)
    }

    if ("rho" %in% greek) {
      result[i, "rho"] <-
        (W_T/volatility - time_to_maturity) %>%
        E()
    }

    if ("rho_d" %in% greek) {
      result[i, "rho_d"] <-
        -time_to_maturity * E(1) + dE(initial_price * I_1/time_to_maturity)
    }

    if ("theta" %in% greek) {
      result[i, "theta"] <-
        ((r - dividend_yield) - 1/time_to_maturity +
           ((1/(volatility * time_to_maturity)) * I_0 * W_T -
              (1/volatility) * X_T * W_T + time_to_maturity * X_T) / I_1 +
           (1/time_to_maturity * I_0 * I_2 - I_2 * X_T) / (I_1^2)) %>%
        E()
    }

    if ("theta_d" %in% greek) {
      result[i, "theta_d"] <-
        (r - dividend_yield) * E(1) +
        dE(initial_price * (I_0/time_to_maturity^2 - X_T/time_to_maturity))
    }

    if ("vega" %in% greek) {
      result[i, "vega"] <-
        ((1 / volatility) *
           ( -(1 + volatility * W_T) +
               (W_T * XW - volatility * tXW) / I_1 +
               (volatility * XW * I_2) / I_1^2)) %>%
        E()
    }

    if ("vega_d" %in% greek) {
      result[i, "vega_d"] <-
        ((initial_price / time_to_maturity) * (XW - volatility * I_1)) %>%
        dE()
    }

    if ("gamma" %in% greek) {
      result[i, "gamma"] <-
        ((1/(volatility^2*initial_price^2)) *
           (2*volatility^2
            - 4*volatility*W_T*I_0/I_1
            + ((W_T^2 - time_to_maturity)*I_0 - 4*volatility^2*I_2)*I_0/I_1^2
            + volatility * (3*W_T*I_2 - volatility*I_3)*I_0^2/I_1^3
            + 3*volatility^2*I_0^2*I_2^2/I_1^4)) %>%
        E()
    }

    if ("gamma_kombi" %in% greek) {
      result[i, "gamma_kombi"] <-
        (1/(volatility * initial_price) *
           (-volatility + I_0/I_1*W_T + volatility*I_0*I_2/(I_1^2))) %>%
        dE()
    }

  }

  return(drop(result))

}
anselmhudde/greeks documentation built on April 14, 2025, 3:56 p.m.