exponential.function <- function (data, chi.res.hist, ks.res.hist, confidence.level) {
log.dist.exponential <- function (par, r) {
a <- par[1]
if(a < 0) return(Inf)
fexponential <- (1 / (2 * pi * a ^ 2 )) * exp(-r/a) # corrected function, adapted from Nathan 2012
-sum(log(fexponential))
}
dist.exponential <- function (r, a) {
fexponential <- 2*pi*r*(1 / (2 * pi * a ^ 2 )) * exp(-r/a) # corrected function, adapted from Nathan 2012
}
# initial values estimation
rate <- 1/mean(data)
# optimization procedure
dist.opt <- optim (par = rate,
fn = log.dist.exponential,
r = data,
method = "Brent",
lower = 1e-6,
upper = 100000)
# output values
# AIC
aic.exponential <- 2 + 2 * dist.opt$value
# AICc
aicc.exponential <- aic.exponential + (2 * length(dist.opt$par)^2 + 2 * length(dist.opt$par))/(length(data) - length(dist.opt$par) - 1 )
# BIC
bic.exponential <- 2 * dist.opt$value + length(dist.opt$par)*log(length(data))
# Chi-squared
chi.expected.values.exponential <- dist.exponential(chi.res.hist$mids, dist.opt$par)*length(data)*(chi.res.hist$breaks[2] - chi.res.hist$breaks[1])
chi.squared.statistic.exponential <- sum((chi.res.hist$counts - chi.expected.values.exponential)^2 / chi.expected.values.exponential)
chi.squared.pvalue.exponential <- 1-pchisq(chi.squared.statistic.exponential, length(chi.res.hist$counts)-2)
# Kolmogorov-Smirnov
ks.expected.values.exponential <- dist.exponential(ks.res.hist$mids, dist.opt$par)*length(data)*(ks.res.hist$breaks[2] - ks.res.hist$breaks[1])
simul.exponential <- c()
for (i in seq_along(ks.res.hist$mids)) {
simul.exponential <- c(simul.exponential, rep(ks.res.hist$mids[i], round(ks.expected.values.exponential[i], 0)))
}
ks.exponential <- ks.test(data, simul.exponential)
g.max.exponential <- as.numeric(ks.exponential$statistic)
KS.exponential <- as.numeric(ks.exponential$p.value)
# cumulative.expected.values.exponential <- c(expected.values.exponential[1])
# for (i in 1+seq_along(expected.values.exponential)) {
# cumulative.expected.values.exponential[i] <- cumulative.expected.values.exponential[i-1] + expected.values.exponential[i]
# }
# cumulative.expected.values.exponential <- cumulative.expected.values.exponential/sum(expected.values.exponential)
# cumulative.expected.values.exponential <- cumulative.expected.values.exponential[!is.na(cumulative.expected.values.exponential)]
# g.max.exponential <- max(abs(cumulative.data - cumulative.expected.values.exponential))
# if (g.max.exponential < (sqrt(-log(0.01/2)/(2*length(cumulative.data))) * (1/(2*length(cumulative.data))))) {
# KS.exponential <- "Accept"
# } else {KS.exponential <- "Reject"}
CI <- confint.dispfit(dist.opt, log.dist.exponential, data=data, lower=c(1e-6), upper=list(100000), confidence.level=confidence.level)
# mean dispersal distance
mean.exponential <- dist.opt$par*2
mean.stderr.exponential <- sqrt(diag(solve(numDeriv::hessian(log.dist.exponential, x=dist.opt$par, r=data))))
# variance
variance.exponential <- 2*dist.opt$par^2
variance.stderr.exponential <- msm::deltamethod(~ x1^2, mean = dist.opt$par, cov = solve(numDeriv::hessian(log.dist.exponential, x=dist.opt$par, r=data)))
# standard deviation
stdev.exponential <- dist.opt$par
stdev.stderr.exponential <- sqrt(diag(solve(numDeriv::hessian(log.dist.exponential, x=dist.opt$par, r=data))))
# skewness
skewness.exponential <- 6 * sqrt(2)
skewness.stderr.exponential <- NA
# kurtosis
kurtosis.exponential <- 30
kurtosis.stderr.exponential <- NA
# output
res <- data.frame(aic.exponential, aicc.exponential, bic.exponential,
chi.squared.statistic.exponential, chi.squared.pvalue.exponential, g.max.exponential, KS.exponential,
dist.opt$par[1], CI["par1.CIlow"], CI["par1.CIupp"],
dist.opt$par[2], CI["par2.CIlow"], CI["par2.CIupp"],
mean.exponential, mean.stderr.exponential, stdev.exponential, stdev.stderr.exponential,
skewness.exponential, skewness.stderr.exponential, kurtosis.exponential, kurtosis.stderr.exponential)
exponential.values <- list("opt" = dist.opt, "res" = res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.