#' Model Summary for spatial hierarchical Bayes models
#'
#' Provides a model summary for fitted hlmBayes_sp models
#'
#' @param sig2 MCMC posterior samples for \eqn{\sigma^2}
#' @param tau2 MCMC posterior samples for \eqn{\tau^2}
#' @param phi MCMC posterior samples for \eqn{\phi}
#' @param beta MCMC posterior samples for \eqn{\beta}
#' @param z MCMC posterior samples for \eqn{Z}
#' @keywords hlm_summary
#' @import stats
#' @importFrom coda as.mcmc
#' @importFrom coda is.mcmc
#' @importFrom coda HPDinterval
#' @export
##################################################################
### Hierarchical Bayesian spatial model: point referenced data ###
##################################################################
hlm_summary <- function(sig2 = NULL,
tau2 = NULL,
phi = NULL,
beta = NULL,
z = NULL){
if(is.null(nrow(beta))){
param_est = rbind(sig2 = c(median(sig2), HPDinterval(sig2)),
tau2 = c(median(tau2), HPDinterval(tau2)),
phi = c(median(phi), HPDinterval(phi)),
beta = c(median(beta), HPDinterval(beta)))
colnames(param_est) = c("median", "lower.hpd", "upper.hpd")
}else{
p = ncol(beta)
param_est = rbind(sig2 = c(median(sig2), HPDinterval(sig2)),
tau2 = c(median(tau2), HPDinterval(tau2)),
phi = c(median(phi), HPDinterval(phi)),
t(apply(beta, 2, function(x) c(median(x), HPDinterval(as.mcmc(x))))))
colnames(param_est) = c("median", "lower.hpd", "upper.hpd")
}
z_est = data.frame(t(apply(z, 2, function(x) c(median(x), HPDinterval(as.mcmc(x))))))
colnames(z_est) = c("median", "lower.hpd", "upper.hpd")
z_est$sig = apply(z_est, 1, function(x){
if(x[2] > 0) return (1)
if(x[3] < 0) return (-1)
else return(0)
})
return(list(param = param_est,
z = z_est))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.