# Predict ----
#' Predict from a `cosinor`
#'
#' @param object A `cosinor` object.
#'
#' @param new_data A data frame or matrix of new predictors.
#'
#' @param type A single character. The type of predictions to generate. Valid
#' options are:
#'
#' - `"numeric"` for numeric predictions.
#'
#' @param ... Additional arguments passed to the prediction function
#'
#' @return A tibble of predictions. The number of rows in the tibble is
#' guaranteed to be the same as the number of rows in `new_data`.
#'
#' @export
predict.cosinor <- function(object, new_data, type = "numeric", ...) {
forged <- hardhat::forge(new_data, object$blueprint)
rlang::arg_match(type, valid_predict_types())
predict_cosinor_bridge(type, object, forged$predictors)
}
# Can adjust prediction types (which are generated from the implementation)
valid_predict_types <- function() {
c("numeric")
}
# Bridge ----
predict_cosinor_bridge <- function(type, object, predictors) {
# Get_predict below needs to have matching type
predict_function <- get_predict_function(type)
predictions <- predict_function(object, predictors)
hardhat::validate_prediction_size(predictions, predictors)
# Return
return(predictions)
}
get_predict_function <- function(type) {
# Make sure that the prediction classes match up to model type
switch(
type,
numeric = predict_cosinor_numeric
)
}
# Implementation ----
# Numeric prediction
predict_cosinor_numeric <- function(object, predictors) {
predictions <- rep(1L, times = nrow(predictors))
hardhat::spruce_numeric(predictions)
# Basic coefs
coefs <- object$coefficients
names(coefs) <- object$coef_names
# Cosinor specific remodeling of coefs
tau <- object$tau
p <- length(tau)
t <- predictors
mesor <- coefs[1]
# Assign to environemntal variables the values of coefficients
for (i in 1:p) {
assign(paste0("amp", i), unname(coefs[paste0("amp", i)]))
assign(paste0("phi", i), unname(coefs[paste0("phi", i)]))
}
# Make prediction based on parameters/coefficients
# y(t) = M + amp1 * cos(2*pi*t/tau1 + phi1) + amp2 * cos(2*pi*t/tau2 + phi2)
pars <- list()
for (i in 1:p) {
pars[[i]] <- get(paste0("amp", i)) * cos(2*pi*t / tau[i] + get(paste0("phi", i)))
}
df <- data.frame(mesor = mesor, trig = matrix(unlist(pars), ncol = length(pars), byrow = FALSE))
pred <- rowSums(df)
# Reformat and return
out <- hardhat::spruce_numeric(pred)
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.