R/fbplot.R

Defines functions .fbplot_mfData fbplot.mfData .fbplot_fData fbplot.fData fbplot

Documented in fbplot fbplot.fData fbplot.mfData

#' Functional boxplot of univariate and multivariate functional data
#'
#' This function can be used to perform the functional boxplot of univariate or
#' multivariate functional data.
#'
#' @section Adjustment:
#'
#' In the \bold{univariate functional case}, when the adjustment option is
#' selected, the value of \eqn{F} is optimized for the univariate functional
#' dataset provided with \code{Data}.
#'
#' In practice, a number \code{adjust$N_trials} of times a synthetic population
#' (of size \code{adjust$tiral_size} with the same covariance (robustly
#' estimated from data) and centerline as \code{fData} is simulated without
#' outliers and each time an optimized value \eqn{F_i} is computed so that a
#' given proportion (\code{adjust$TPR}) of observations is flagged as outliers.
#' The final value of \code{F} for the functional boxplot is determined as an
#' average of \eqn{F_1, F_2, \dots, F_{N_{trials}}}. At each time step the
#' optimization problem is solved using \code{stats::uniroot} (Brent's method).
#'
#' @param Data the univariate or multivariate functional dataset whose
#'   functional boxplot must be determined, in form of \code{fData} or
#'   \code{mfData} object.
#' @param Depths either a vector containing the depths for each element of the
#'   dataset, or:
#'
#'   * \emph{univariate case}: a string containing the name of the method you
#'   want to use to compute it. The default is \code{'MBD'}.
#'   * \emph{multivariate case}: a list with elements \code{def}, containing the
#'   name of the depth notion to be used to compute depths (\code{BD} or
#'   \code{MBD}), and \code{weights}, containing the value of parameter
#'   \code{weights} to be passed to the depth function. Default is
#'   \code{list(def = 'MBD', weights = 'uniform')}.
#'
#' In both cases the name of the functions to compute depths must be available
#' in the caller's environment.
#' @param Fvalue the value of the inflation factor \eqn{F}, default is \code{F =
#'   1.5}.
#' @param adjust either \code{FALSE} if you would like the default value for the
#'   inflation factor, \eqn{F = 1.5}, to be used, or (for now \bold{only in the
#'   univariate functional case}) a list specifying the parameters required by
#'   the adjustment:
#'
#'   * \code{N_trials}: the number of repetitions of the adjustment procedure
#'   based on the simulation of a gaussian population of functional data, each
#'   one producing an adjusted value of \eqn{F}, which will lead to the averaged
#'   adjusted value \eqn{\bar{F}}. Default is 20.
#'   * \code{trial_size}: the number of elements in the gaussian population of
#'   functional data that will be simulated at each repetition of the adjustment
#'   procedure. Default is 8 * \code{Data$N}.
#'   * \code{TPR}: the True Positive Rate of outliers, i.e. the proportion of
#'   observations in a dataset without amplitude outliers that have to be
#'   considered outliers. Default is \code{2 * pnorm(4 * qnorm(0.25))}.
#'   * \code{F_min}: the minimum value of \eqn{F}, defining the left boundary
#'   for the optimization problem aimed at finding, for a given dataset of
#'   simulated gaussian data associated to \code{Data}, the optimal value of
#'   \eqn{F}. Default is 0.5.
#'   * \code{F_max}: the maximum value of \eqn{F}, defining the right boundary
#'   for the optimization problem aimed at finding, for a given dataset of
#'   simulated gaussian data associated to \code{Data}, the optimal value of
#'   \eqn{F}. Default is 5.
#'   * \code{tol}: the tolerance to be used in the optimization problem aimed at
#'   finding, for a given dataset of simulated gaussian data associated to
#'   \code{Data}, the optimal value of \eqn{F}. Default is \code{1e-3}.
#'   * \code{maxiter}: the maximum number of iterations to solve the
#'   optimization problem aimed at finding, for a given dataset of simulated
#'   gaussian data associated to \code{Data}, the optimal value of \eqn{F}.
#'   Default is \code{100}.
#'   * \code{VERBOSE}: a parameter controlling the verbosity of the adjustment
#'   process.
#'
#' @param display either a logical value indicating whether you want the
#'   functional boxplot to be displayed, or the number of the graphical device
#'   where you want the functional boxplot to be displayed.
#' @param xlab the label to use on the x axis when displaying the functional
#'   boxplot.
#' @param ylab the label (or list of labels for the multivariate functional
#'   case) to use on the y axis when displaying the functional boxplot.
#' @param main the main title (or list of titles for the multivariate functional
#'   case) to be used when displaying the functional boxplot.
#' @param ... additional graphical parameters to be used in plotting functions.
#'
#' @return Even when used in graphical way to plot the functional boxplot, the
#'   function returns a list of three elements:
#'
#'   * \code{Depths}: contains the depths of each element of the functional
#'   dataset.
#'   * \code{Fvalue}: is the value of F used to obtain the outliers.
#'   * \code{ID_out}: contains the vector of indices of dataset elements flagged
#'   as outliers (if any).
#'
#' @references
#'
#'   1. Sun, Y., & Genton, M. G. (2012). Functional boxplots. Journal of
#'   Computational and Graphical Statistics.
#'   1. Sun, Y., & Genton, M. G. (2012). Adjusted functional boxplots for
#'   spatio-temporal data visualization and outlier detection. Environmetrics,
#'   23(1), 54-64.
#'
#' @examples
#'
#' # UNIVARIATE FUNCTIONAL BOXPLOT - NO ADJUSTMENT
#'
#' set.seed(1)
#'
#' N = 2 * 100 + 1
#' P = 2e2
#'
#' grid = seq( 0, 1, length.out = P )
#'
#' D = 10 * matrix( sin( 2 * pi * grid ), nrow = N, ncol = P, byrow = TRUE )
#'
#' D = D + rexp(N, rate = 0.05)
#'
#'
#' # c( 0, 1 : (( N - 1 )/2), -( ( ( N - 1 ) / 2 ) : 1 ) )^4
#'
#'
#' fD = fData( grid, D )
#'
#' dev.new()
#' oldpar <- par(mfrow = c(1, 1))
#' par(mfrow = c(1, 3))
#'
#' plot( fD, lwd = 2, main = 'Functional dataset',
#'       xlab = 'time', ylab = 'values' )
#'
#' fbplot( fD, main = 'Functional boxplot', xlab = 'time', ylab = 'values', Fvalue = 1.5 )
#'
#' boxplot(fD$values[,1], ylim = range(fD$values), main = 'Boxplot of functional dataset at t_0 ' )
#'
#' par(oldpar)
#'
#' # UNIVARIATE FUNCTIONAL BOXPLOT - WITH ADJUSTMENT
#'
#'
#' set.seed( 161803 )
#'
#' P = 2e2
#' grid = seq( 0, 1, length.out = P )
#'
#' N = 1e2
#'
#' # Generating a univariate synthetic gaussian dataset
#' Data = generate_gauss_fdata( N, centerline = sin( 2 * pi * grid ),
#'                              Cov = exp_cov_function( grid,
#'                                                      alpha = 0.3,
#'                                                      beta  = 0.4 ) )
#' fD = fData( grid, Data )
#'
#' dev.new()
#' \donttest{
#' fbplot( fD, adjust = list( N_trials = 10,
#'                            trial_size = 5 * N,
#'                            VERBOSE = TRUE ),
#'                      xlab = 'time', ylab = 'Values',
#'                      main = 'My adjusted functional boxplot' )
#' }
#'
#' # MULTIVARIATE FUNCTIONAL BOXPLOT - NO ADJUSTMENT
#'
#' set.seed( 1618033 )
#'
#' P = 1e2
#' N = 1e2
#' L = 2
#'
#' grid = seq( 0, 1, length.out = 1e2 )
#'
#' C1 = exp_cov_function( grid, alpha = 0.3, beta = 0.4 )
#' C2 = exp_cov_function( grid, alpha = 0.3, beta = 0.4 )
#'
#' # Generating a bivariate functional dataset of gaussian data with partially
#' # correlated components
#' Data = generate_gauss_mfdata( N, L,
#'                               centerline = matrix( sin( 2 * pi * grid ),
#'                                                    nrow = 2, ncol = P,
#'                                                    byrow = TRUE ),
#'                               correlations = rep( 0.5, 1 ),
#'                               listCov = list( C1, C2 ) )
#'
#' mfD = mfData( grid, Data )
#'
#' dev.new()
#' fbplot( mfD, Fvalue = 2.5, xlab = 'time', ylab = list( 'Values 1',
#'                                                        'Values 2' ),
#'         main = list( 'First component', 'Second component' ) )
#'
#'
#'
#' @seealso \code{\link{fData}}, \code{\link{MBD}}, \code{\link{BD}},
#' \code{\link{mfData}}, \code{\link{multiMBD}}, \code{\link{multiBD}}
#'
#' @export
fbplot = function( Data,
                   Depths = 'MBD',
                   Fvalue = 1.5,
                   adjust = FALSE,
                   display = TRUE,
                   xlab = NULL,
                   ylab = NULL,
                   main = NULL,
                   ... )
{
  UseMethod( 'fbplot', Data )
}

#' @rdname fbplot
#' @export
fbplot.fData = function( Data,
                         Depths = 'MBD',
                         Fvalue = 1.5,
                         adjust = FALSE,
                         display = TRUE,
                         xlab = NULL,
                         ylab = NULL,
                         main = NULL,
                         ... )
{
  # Checking if depths have already been provided or must be computed
  if( is.character( Depths ) )
  {
    # Nice trick to encapsulate the information on the desired definition of
    # depth inside the vector that supposedly should contain depth values
    Depths_spec = Depths

    if( Depths_spec == 'MBD' )
    {
      Depths = MBD( Data$values, manage_ties = TRUE )
    } else {
      Depths = eval( parse( text = paste( Depths, '( Data$values )',
                                          sep = '' ) ) )
    }
  } else {
    stopifnot( length( Depths ) == Data$N )
  }

  if( ! is.list( adjust ) )
  {
    # Plain functional boxplot with default F value: F = 1.5

    out = .fbplot_fData( time_grid, Data$values, Depths, Fvalue )

  } else {

    nodenames = c( 'N_trials', 'trial_size', 'TPR', 'F_min', 'F_max',
                   'tol', 'maxiter', 'VERBOSE' )
    unused = setdiff( names( adjust ), nodenames )

    # Checking for unused parameters
    if( length( unused ) > 0 )
    {
      for( i in unused )
        warning( 'Warning: unused parameter ', i, ' in adjust argument of fbplot' )
    }

    N_trials = ifelse( is.null( adjust$N_trials ),
                       20,
                       adjust$N_trials )

    trial_size = ifelse( is.null( adjust$trial_size ),
                         8 * Data$N,
                         adjust$trial_size )

    TPR = ifelse( is.null( adjust$TPR ),
                  2 * stats::pnorm( 4 * stats::qnorm( 0.25 ) ),
                  adjust$TPR )

    F_min = ifelse( is.null( adjust$F_min ),
                    0.5,
                    adjust$F_min )

    F_max= ifelse( is.null( adjust$F_max ),
                   5,
                   adjust$F_max )

    tol = ifelse( is.null( adjust$tol ),
                  1e-3,
                  adjust$tol )

    maxiter = ifelse( is.null( adjust$maxiter ),
                      100,
                      adjust$maxiter )

    VERBOSE = ifelse( is.null( adjust$VERBOSE ),
                      FALSE,
                      adjust$VERBOSE )

    # Estimation of robust covariance matrix
    Cov = robustbase::covOGK( Data$values, sigmamu = robustbase::s_Qn )$cov

    # Cholesky factor
    CholCov <- chol( Cov )

    # Centerline of the dataset
    centerline = Data$values[ which.max( Depths ), ]

    Fvalues = rep( 0, N_trials )

    cost_functional = function( F_curr )( length(
      .fbplot_fData( time_grid,
                     Data_gauss,
                     Depths = Depths_spec,
                     Fvalue = F_curr )$ID_out ) /
        trial_size - TPR )

    for( iTrial in 1 : N_trials )
    {
      if( VERBOSE > 0 )
      {
        cat( ' * * * Iteration ', iTrial, ' / ', N_trials, '\n' )
      }

      Data_gauss = generate_gauss_fdata( trial_size, centerline, CholCov = CholCov )

      if( VERBOSE > 0 )
      {
        cat( ' * * * * beginning optimization\n' )
      }

      opt = stats::uniroot( cost_functional,
                     interval = c( F_min, F_max ),
                     tol = tol,
                     maxiter = maxiter )
      if( VERBOSE > 0 )
      {
        cat( ' * * * * optimization finished.\n')
      }

      Fvalues[ iTrial ] = opt$root
    }

    Fvalue = mean( Fvalues )

    out = .fbplot_fData( time_grid, Data$values, Depths, Fvalue = Fvalue  )
  }

  ID_out = out$ID_out

  # Plotting part
  if( is.numeric( display ) )
  {
    grDevices::dev.set( display )
  }

  if( ! display == FALSE )
  {
    # Creating color palettes
    col_non_outlying = scales::hue_pal( h = c( 180, 270 ),
                                        l = 60 )( Data$N - length( ID_out ) )

    col_non_outlying = set_alpha( col_non_outlying, 0.5 )

    if( length( ID_out ) > 0 )
    {
      col_outlying = scales::hue_pal( h = c( - 90, 180  ),
                                      c = 150 )( length( ID_out ) )
    } else {
      col_outlying = scales::hue_pal( h = c( - 90, 180  ),
                                      c = 150 )( 1 )
    }

    col_envelope = set_alpha( 'blue', alpha = 0.4 )
    col_center = set_alpha( 'blue', alpha = 1 )
    col_fence_structure = 'darkblue'

    time_grid = seq( Data$t0, Data$tP, length.out = Data$P )

    xlab = ifelse( is.null( xlab ), '', xlab )
    ylab = ifelse( is.null( ylab ), '', ylab )
    main = ifelse( is.null( main ), '', main )

    if( length( ID_out ) > 0 )
    {
      # Plotting non-outlying data
      graphics::matplot( time_grid,
               t( Data$values[ - ID_out, ] ), lty = 1, type = 'l',
               col = col_non_outlying,
               ylim = range( Data$values ),
               xlab = xlab, ylab = ylab, main = main, ... )

      # Computing maximum and minimum envelope
      max_envelope_limit = apply( Data$values[ - ID_out, ], 2, max )
      min_envelope_limit = apply( Data$values[ - ID_out, ], 2, min )
    } else {
      # Plotting all data
      graphics::matplot( time_grid,
               t( Data$values ), lty = 1, type = 'l',
               col = col_non_outlying,
               ylim = range( Data$values ),
               xlab = xlab, ylab = ylab, main = main, ... )

      # Computing maximum and minimum envelope
      max_envelope_limit = apply( Data$values, 2, max )
      min_envelope_limit = apply( Data$values, 2, min )
    }


    # Filling in the central envelope

    graphics::polygon( c(time_grid, rev( time_grid) ),
             c( out$min_envelope_central, rev( out$max_envelope_central ) ),
             col = col_envelope, border = NA)
    graphics::lines( time_grid, out$max_envelope_central, lty = 1, col = col_envelope, lwd = 3 )
    graphics::lines( time_grid, out$min_envelope_central, lty = 1, col = col_envelope, lwd = 3 )

    # Plotting the sample median
    graphics::lines( time_grid, Data$values[ which.max( Depths ), ], lty = 1, type = 'l',
           col = col_center, lwd = 3)

    graphics::lines( time_grid, max_envelope_limit, lty = 1,
    col = col_fence_structure, lwd = 3 )
    graphics::lines( time_grid, min_envelope_limit, lty = 1,
    col = col_fence_structure, lwd = 3 )

    # Plotting vertical whiskers
    half.time_grid = which.min( abs( time_grid - 0.5 ) )
    graphics::lines( c( time_grid[ half.time_grid ], time_grid[ half.time_grid ] ),
           c( out$max_envelope_central[ half.time_grid ],
              max_envelope_limit[ half.time_grid ] ),
           lty = 1, col = col_fence_structure, lwd = 3 )

    graphics::lines( c( time_grid[ half.time_grid ], time_grid[ half.time_grid ] ),
           c( out$min_envelope_central[ half.time_grid ],
              min_envelope_limit[ half.time_grid ] ),
           lty = 1, col = col_fence_structure, lwd = 3 )

    # Plotting outlying data
    if( length( ID_out ) > 0 )
    {
      graphics::matplot( time_grid, t( toRowMatrixForm( Data$values[ ID_out, ] ) ),
               lty = 1, type = 'l', col = col_outlying, lwd = 3, add = T )
    }
  }

  return( list( Depth = Depths,
                Fvalue = Fvalue,
                ID_outliers = ID_out ) )
}


.fbplot_fData = function( time_grid, Data, Depths = 'MBD', Fvalue = 1.5 )
{
  # Number of observations
  N = nrow( Data )

  # Checking if depths have already been provided or must be computed
  if( is.character( Depths ) )
  {
    # Nice trick to encapsulate the information on the desired definiton of
    # depth inside the vector that supposedly should contain depth values
    Depths = eval( parse( text = paste( Depths, '( Data )', sep = '' ) ) )
  } else {
    stopifnot( length( Depths ) == N )
  }

  Data_center = Data[ which.max( Depths ), ]

  id_central_region = which( Depths >= stats::quantile( Depths, prob = 0.5 ) )

  max_envelope_central = apply( Data[ id_central_region, ], 2, max )
  min_envelope_central = apply( Data[ id_central_region, ], 2, min )

  fence_upper = ( max_envelope_central - min_envelope_central ) * Fvalue + max_envelope_central
  fence_lower = ( min_envelope_central - max_envelope_central ) * Fvalue + min_envelope_central

  ID_outlying = which( apply( Data, 1, function(x)( any( x > fence_upper  ) |
                                                      any ( x < fence_lower ) ) ) )

  return( list( ID_out = ID_outlying,
                min_envelope_central = min_envelope_central,
                max_envelope_central = max_envelope_central,
                fence_lower = fence_lower,
                fence_upper = fence_upper ) )
}

#' @rdname fbplot
#'
#' @export
fbplot.mfData = function( Data,
                          Depths = list( def = 'MBD',
                                         weights = 'uniform' ),
                          Fvalue = 1.5,
                          adjust = FALSE,
                          display = TRUE,
                          xlab = NULL,
                          ylab = NULL,
                          main = NULL,
                          ... )
{
  if( is.list( adjust ) )
  {
    stop( ' Error in fbplot.mfData: for now the adjustment support is not
provided in the multivariate version of the functional boxplot' )
  }

  listOfValues = toListOfValues( Data )

  # Checking if depths have already been provided or must be computed
  if( is.list( Depths ) )
  {
    if( length( Depths ) != 2 & ! identical( names( Depths ),
                                             c( 'def', 'weights' ) ) )
    {
      stop( " Error in fbplot.mfData: you have to provide both a specification
            for the depth definition and one for the set of weights.")
    }

    # Nice trick to encapsulate the information on the desired definiton of
    # depth inside the vector that supposedly should contain depth values
    Depths_spec = Depths

    if( Depths_spec[[ 'def' ]] == 'MBD' )
    {
      Depths = multiMBD( listOfValues,
                         weights = Depths_spec[[ 'weights' ]],
                         manage_ties = TRUE )
    } else {
      Depths = eval( parse( text = paste( Depths, '( listOfValues )',
                                          sep = '' ) ) )
    }
  } else {
    stopifnot( length( Depths ) == Data$N )
  }

  out = .fbplot_mfData( time_grid, listOfValues, Depths, Fvalue  )

  ID_out = out$ID_out

  if( is.numeric( display ) )
  {
    grDevices::dev.set( display )
  }

  if( ! display == FALSE )
  {
    if( ! is.null( ylab ) )
    {
      if( length( ylab ) == 1 )
      {
        ylab = rep( ylab, Data$L )
      } else if( length( ylab ) != Data$L )
      {
        stop( 'Error in fbplot.mfData: you specified a wrong number of y
              labels' )
      }
      } else {
        ylab = rep( list( '' ), Data$L )
    }

    if( ! is.null( main ) )
    {
      if( length( main ) == 1 )
      {
        main = rep( main, Data$L )
      } else if( length( main ) != Data$L )
      {
        stop( 'Error in fbplot.mfData: you specified a wrong number of
              subtitles' )
      }
      } else {
        main = rep( list( '' ), Data$L )
    }

    # Subdividing the graphical window
    mfrow_rows = ceiling( Data$L / 2 )
    mfrow_cols = 2

    oldpar <- graphics::par(mfrow = c(1, 1))
    on.exit(graphics::par(oldpar))
    graphics::par(mfrow = c(mfrow_rows, mfrow_cols))

    # Creating color palettes
    col_non_outlying = scales::hue_pal( h = c( 180, 270 ),
                                        l = 60 )( Data$N - length( ID_out ) )

    col_non_outlying = set_alpha( col_non_outlying, 0.5 )

    if( length( ID_out ) > 0 )
    {
      col_outlying = scales::hue_pal( h = c( - 90, 180  ),
                                      c = 150 )( length( ID_out ) )
    } else {
      col_outlying = scales::hue_pal( h = c( - 90, 180  ),
                                      c = 150 )( 1 )
    }

    col_envelope = set_alpha( 'blue', alpha = 0.4 )
    col_center = set_alpha( 'blue', alpha = 1 )
    col_fence_structure = 'darkblue'

    time_grid = seq( Data$t0, Data$tP, length.out = Data$P )

    xlab = ifelse( is.null( xlab ), '', xlab )

    for( iL in 1 : Data$L )
    {
      Data_curr = Data$fDList[[ iL ]]$values

      if( length( ID_out ) > 0 )
      {
        # Plotting non-outlying data
        graphics::matplot( time_grid,
                 t( Data_curr[ - ID_out, ] ), lty = 1, type = 'l',
                 col = col_non_outlying,
                 ylim = range( Data_curr ),
                 xlab = xlab,
                 ylab = ylab[[ iL ]],
                 main = main[[ iL ]], ... )

        # Computing maximum and minimum envelope
        max_envelope_limit = apply( Data_curr[ - ID_out, ], 2, max )
        min_envelope_limit = apply( Data_curr[ - ID_out, ], 2, min )
      } else {
        # Plotting all data
        graphics::matplot( time_grid,
                 t( Data_curr ), lty = 1, type = 'l',
                 col = col_non_outlying,
                 ylim = range( Data_curr ),
                 xlab = xlab, ylab = ylab, main = main, ... )

        # Computing maximum and minimum envelope
        max_envelope_limit = apply( Data_curr, 2, max )
        min_envelope_limit = apply( Data_curr, 2, min )
      }

      # Filling in the central envelope

      graphics::polygon( c(time_grid, rev( time_grid) ),
               c( as.numeric( out$min_envelope_central[ iL, ] ),
                  rev( as.numeric( out$max_envelope_central[ iL, ] ) ) ),
               col = col_envelope, border = NA)
      graphics::lines( time_grid, as.numeric( out$max_envelope_central[ iL, ] ),
             lty = 1, col = col_envelope, lwd = 3 )
      graphics::lines( time_grid, as.numeric( out$min_envelope_central[ iL, ] ),
             lty = 1, col = col_envelope, lwd = 3 )

      # Plotting the sample median
      graphics::lines( time_grid, Data_curr[ which.max( Depths ), ], lty = 1, type = 'l',
             col = col_center, lwd = 3)

      graphics::lines( time_grid, max_envelope_limit, lty = 1,
             col = col_fence_structure, lwd = 3 )
      graphics::lines( time_grid, min_envelope_limit, lty = 1,
             col = col_fence_structure, lwd = 3 )

      # Plotting vertical whiskers
      half.time_grid = which.min( abs( time_grid - 0.5 ) )
      graphics::lines( c( time_grid[ half.time_grid ], time_grid[ half.time_grid ] ),
             c( out$max_envelope_central[ iL, half.time_grid ],
                max_envelope_limit[ half.time_grid ] ),
             lty = 1, col = col_fence_structure, lwd = 3 )

      graphics::lines( c( time_grid[ half.time_grid ], time_grid[ half.time_grid ] ),
             c( out$min_envelope_central[ iL, half.time_grid ],
                min_envelope_limit[ half.time_grid ] ),
             lty = 1, col = col_fence_structure, lwd = 3 )


      # Plotting outlying data
      if( length( ID_out ) > 0 )
      {
        graphics::matplot( time_grid, t( toRowMatrixForm( Data_curr[ ID_out, ] ) ),
                 lty = 1, type = 'l', col = col_outlying, lwd = 3, add = T )
      }
    }
  }

  return( list( Depth = Depths,
                Fvalue = Fvalue,
                ID_outliers = ID_out ) )
}


.fbplot_mfData = function( time_grid,
                           listOfValues,
                           Depths = list( def = 'MBD',
                                          weights = 'uniform' ),
                           Fvalue = 1.5 )
{

  L = length( listOfValues )
  N = nrow( listOfValues[[ 1 ]] )
  P = ncol( listOfValues[[ 2 ]] )

  # Checking if depths have already been provided or must be computed
  if( is.list( Depths ) )
  {
    if( length( Depths ) != 2 & ! identical( names( Depths ),
                                             c( 'def', 'weights' ) ) )
    {
      stop( " Error in .fbplot_mfData: you have to provide both a specification
            for the depth definition and one for the set of weights.")
    }

    # Nice trick to encapsulate the information on the desired definiton of
    # depth inside the vector that supposedly should contain depth values
    Depths_spec = Depths

    if( Depths_spec[[ 'def' ]] == 'MBD' )
    {
      Depths = multiMBD( listOfValues,
                         weights = Depths_spec[[ 'weights' ]],
                         manage_ties = TRUE )
    } else {
      Depths = eval( parse( text = paste( Depths, '( listOfValues )',
                                          sep = '' ) ) )
    }
  } else {
    stopifnot( length( Depths ) == N )
  }

  # Nice hack to extract selected row from each matrix of the list and
  # concatenate the result into a row-major matrix
  Data_center = t( sapply( listOfValues, `[`,  which.max( Depths ), 1 : P ) )

  id_central_region = which( Depths >= stats::quantile( Depths, prob = 0.5 ) )

  max_envelope_central = t( sapply( 1 : L, function( i ) (
    apply( listOfValues[[ i ]][ id_central_region, ], 2, max ) ) ) )

  min_envelope_central = t( sapply( 1 : L, function( i ) (
    apply( listOfValues[[ i ]][ id_central_region, ], 2, min ) ) ) )

  fence_upper = ( max_envelope_central - min_envelope_central ) * Fvalue + max_envelope_central
  fence_lower = ( min_envelope_central - max_envelope_central ) * Fvalue + min_envelope_central

  ID_outlying = unique( unlist( lapply( 1 : L, function( iL ) ( which(
    apply( listOfValues[[ iL ]], 1,
           function( x ) ( any( x > as.numeric( fence_upper[ iL, ] ) ) |
                             any( x < as.numeric( fence_lower[ iL, ] ) ) ) ) )
  ) ) ) )

  return( list( ID_out = ID_outlying,
                min_envelope_central = min_envelope_central,
                max_envelope_central = max_envelope_central,
                fence_lower = fence_lower,
                fence_upper = fence_upper ) )
}
astamm/roahd documentation built on Feb. 9, 2022, 12:57 a.m.