Description Usage Arguments Value See Also Examples
Use log likelihood criterion to select optimal model for best PC set.
1 | determineOptimalModel(bestPCSet)
|
bestPCSet |
a matrix whose columns contain the optimal principal components. |
summary of output from mclust::mclustBIC(<bestPCSet>) computed with optimal model parameters.
1 2 3 4 5 6 7 | data <- validateAndLoadData(iris)
pcObj <- prcomp(data)
pcData <- pcObj$x
iterationResults <- executePCFiltering(pcData)
bestPCSet <- iterationResults[[length(iterationResults)]]
clusterResults <- evaluateClusterQuality(bestPCSet)
optimalModel <- determineOptimalModel(bestPCSet)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.