Description Usage Arguments Value See Also Examples
Baseline PCA visualizations including standard 2-component PCA plot, density plot, and variance contribution pie chart.
1 | visualizePCA(bestPCSet, clusters, pcObj, outDir = ".")
|
bestPCSet |
a matrix whose columns contain the optimal principal components. |
clusters |
vector of predicted labels |
pcObj |
a PCA object |
outDir |
path to ouput directory where pcclust_visualization folder will be generated. Defaults to current working directory. |
path to pcclust_visualization output directory. Outputs high quality .svg files for each of the 3 plots.
1 2 3 4 5 6 7 8 9 | data <- validateAndLoadData(iris)
pcObj <- prcomp(data)
pcData <- pcObj$x
iterationResults <- executePCFiltering(pcData)
bestPCSet <- iterationResults[[length(iterationResults)]]
clusterResults <- evaluateClusterQuality(bestPCSet)
optimalModel <- determineOptimalModel(bestPCSet)
clusters <- optimalModel$classification
out <- visualizePCA(bestPCSet, clusters, pcObj)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.