Description Usage Arguments Value See Also Examples
compute Bayesian information criterion (BIC) for Gaussian mixture models (GMM) and associated log likelihood to quantify cluster quality for a subset of PCs.
1 | evaluateClusterQuality(pcMatrix)
|
pcMatrix |
a matrix whose columns contain the principal components. |
list containing optimal model characteristics and classification
1 2 3 4 5 6 | data <- validateAndLoadData(iris)
pcObj <- prcomp(data)
pcData <- pcObj$x
iterationResults <- executePCFiltering(pcData)
bestPCSet <- iterationResults[[length(iterationResults)]]
clusterResults <- evaluateClusterQuality(bestPCSet)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.