Description Usage Arguments Value See Also Examples
Supporting PCA visualizations and sample-specific metadata including standard 2-component PCA plot labeled with query, a diverging lollipop chart showing the PC breakdown for the query, and an interactive PCA plot showing the location of the query in 3D space.
1 | zoomPC(x, y, pcData, bestPCSet, clusters, iterationResults, outPath)
|
x |
approximate x coordinate value from optimal PCA plot. See details for more information. |
y |
same as x. |
pcData |
a validated R matrix containing numeric scaled PCA data. |
bestPCSet |
a matrix whose columns contain the optimal principal components. |
clusters |
vector of predicted labels |
iterationResults |
list of iteration results from PCA filtering, where each iteation has one less PC. List elements are PCA matrices. Last entry in the list corresponds to the top 2 PCs for clustering. |
outPath |
path to ouput directory where pcclust_visualization folder was generated. |
NULL. Outputs high quality .svg files in pcclust_visualization for each of the 2 plots.
1 2 3 4 5 6 7 8 9 10 11 12 | data <- validateAndLoadData(iris)
pcObj <- prcomp(data)
pcData <- pcObj$x
iterationResults <- executePCFiltering(pcData)
bestPCSet <- iterationResults[[length(iterationResults)]]
clusterResults <- evaluateClusterQuality(bestPCSet)
optimalModel <- determineOptimalModel(bestPCSet)
clusters <- optimalModel$classification
out <- visualizePCA(bestPCSet, clusters, pcObj)
x <- 0.5
y <- -0.3
zoomPC(x, y, pcData, bestPCSet, clusters, iterationResults, out)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.