# para instalar todos los paquetes # if(!require("learnr")) install.packages("learnr") # if(!require("remotes")) install.packages("remotes") # if(!require("tidyverse")) install.packages("tidyverse") # if(!require("tibble")) install.packages("tibble") # if(!require("lubridate")) install.packages("lubridate") # if(!require("outbreaks")) install.packages("outbreaks") # if(!require("incidence")) install.packages("incidence") # if(!require("EpiEstim")) install.packages("EpiEstim") # if(!require("skimr")) install.packages("skimr") # if(!require("furrr")) install.packages("furrr") # if(!require("tictoc")) install.packages("tictoc") # if(!require("janitor")) install.packages("janitor") # if(!require("patchwork")) install.packages("patchwork") # if(!require("incidenceflow")) remotes::install_github("avallecam/incidenceflow") if(!require("survey")) install.packages("survey") if(!require("srvyr")) install.packages("srvyr") if(!require("serosurvey")) remotes::install_github("avallecam/serosurvey")
library(learnr) knitr::opts_chunk$set( collapse = TRUE, comment = "#>", echo = FALSE, message = FALSE, warning = FALSE ) # knitr::opts_chunk$set(fig.width=10, fig.height=4) options(tidyverse.quiet = TRUE)
copiar:
%>%
Más detalles de este flujo aquí.
library(serosurvey) # additional library(tidyverse) library(srvyr) library(survey) # theme theme_set(theme_bw()) data(api) datasurvey <- apiclus2 %>% mutate(survey_all="survey_all") %>% # create variables mutate(outcome_one = awards, outcome_two = cut(pct.resp,breaks = 2), covariate_01 = stype, covariate_02 = both) %>% select(dnum,snum,pw,starts_with("outcome"),starts_with("covariate")) # tratamiento de stratos con un solo conglomerado options(survey.lonely.psu = "certainty") # uu_clean_data %>% count(CONGLOMERADO,VIVIENDA) # diseño muestral de la encuesta --------------------------------- design <- datasurvey %>% filter(!is.na(outcome_one)) %>% #CRITICAL! ON OUTCOME filter(!is.na(pw)) %>% #NO DEBEN DE HABER CONGLOMERADOS SIN WEIGHT as_survey_design( id=c(dnum, snum), #~dnum+snum, # primary secondary sampling unit # strata = strata, #clusters need to be nested in the strata weights = pw # factores de expancion ) # denominadores covariate_set01 <- datasurvey %>% select(covariate_01, #sch.wide, #comp.imp, covariate_02) %>% colnames() # numerators within outcome covariate_set02 <- datasurvey %>% select(#stype, #sch.wide, #comp.imp, covariate_02) %>% colnames()
Indicaciaciones:
design
srvyr
serosvy_proportion()
design
serosvy_proportion(design = design, denominator = covariate_01, numerator = outcome_one)
copiar:
%>%
Indicaciones:
expand_grid()
para crear una matrix con todas las combinacionessym()
para leer "cadenas" como "argumentos" para una función# set 01 of denominator-numerator expand_grid( design=list(design), denominator=c("covariate_01","covariate_02"), # covariates numerator=c("outcome_one","outcome_two") # outcomes )
# copia aquí el flujo por partes # para ver cómo cambia el output
expand_grid( design=list(design), denominator=c("covariate_01","covariate_02"), # covariates numerator=c("outcome_one","outcome_two") # outcomes ) %>% # # create symbols (to be readed as arguments) # mutate( denominator=map(denominator,dplyr::sym), numerator=map(numerator,dplyr::sym) )
# copia aquí el flujo por partes # para ver cómo cambia el output
copiar:
%>%
Indicaciones:
pmap()
para aplicar una función con múltiples argumentos
a múltiples combinaciones# crear matriz # # set 01 of denominator-numerator # expand_grid( design=list(design), denominator=c("covariate_01","covariate_02"), # covariates numerator=c("outcome_one","outcome_two") # outcomes ) %>% # # create symbols (to be readed as arguments) # mutate( denominator=map(denominator,dplyr::sym), numerator=map(numerator,dplyr::sym) ) %>% # # estimate prevalence ------- OJO: usamos select(.,...) + pmap # mutate(output=pmap(.l = select(.,design,denominator,numerator), .f = serosvy_proportion)) %>% # # show the outcome # select(-design,-denominator,-numerator) %>% unnest(cols = c(output)) %>% # select(1:5) %>% print(n=Inf)
# copia aquí el flujo por partes # para ver cómo cambia el output
# crear matriz # # set 01 of denominator-numerator # expand_grid( design=list(design), denominator=c("covariate_01","covariate_02"), # covariates numerator=c("outcome_one","outcome_two") # outcomes ) %>% # # create symbols (to be readed as arguments) # mutate( denominator=map(denominator,dplyr::sym), numerator=map(numerator,dplyr::sym) ) %>% # # estimate prevalence ------- OJO: usamos select(.,...) + pmap # mutate(output=pmap(.l = select(.,design,denominator,numerator), .f = serosvy_proportion)) %>% # # show the outcome # # retira columnas simbolo # select(-design,-denominator,-numerator) %>% # # des-anidar # unnest(cols = c(output)) %>% # # imprimir todo el resultado # print(n=Inf)
copiar:
%>%
Indicaciones:
union_all
aquí# crear matriz # # set 01 of denominator-numerator # expand_grid( design=list(design), denominator=c("covariate_01","covariate_02"), # covariates numerator=c("outcome_one","outcome_two") # outcomes ) %>% # # set 02 of denominator-numerator (e.g. within main outcome) # _________( expand_grid( design=list(design), denominator=c("outcome_one","outcome_two"), # outcomes numerator=c("covariate_02") # covariates ) )
# copia aquí el flujo por partes # para ver cómo cambia el output
# ?union_all
# # crear matriz # # # # set 01 of denominator-numerator # # # expand_grid( # design=list(design), # denominator=c("covariate_01","covariate_02"), # covariates # numerator=c("outcome_one","outcome_two") # outcomes # ) %>% # # # # set 02 of denominator-numerator (e.g. within main outcome) # # # union_all( # expand_grid( # design=list(design), # denominator=c("outcome_one","outcome_two"), # outcomes # numerator=c("covariate_02") # covariates # ) # ) %>% # # # # create symbols (to be readed as arguments) # # # mutate( # denominator=map(denominator,dplyr::sym), # numerator=map(numerator,dplyr::sym) # ) %>% # # # # estimate prevalence # # # mutate(output=pmap(.l = select(.,design,denominator,numerator), # .f = serosvy_proportion)) %>% # # # # show the outcome # # # select(-design,-denominator,-numerator) %>% # unnest(cols = c(output)) %>% # print(n=Inf)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.