R/internal_clean_coordinate.R

Defines functions ras_dist ras_create reproj

# Check projection of custom reference and reproject to wgs84 if necessary
reproj <- function(ref){
  wgs84 <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"
  
  # if no projection information is given assume wgs84
  if(is.na(sp::proj4string(ref))){
    warning("no projection information for reference found, 
            assuming '+proj=longlat +datum=WGS84 +no_defs 
            +ellps=WGS84 +towgs84=0,0,0'")
    proj4string(ref) <- wgs84
  }else if(sp::proj4string(ref) != wgs84){
    #otherwise reproject
    ref <- sp::spTransform(ref, sp::CRS(wgs84))
    warning("reprojecting reference to '+proj=longlat +datum=WGS84 
            +no_defs +ellps=WGS84 +towgs84=0,0,0'")
  }
  return(ref)
}

# A function to create a raster from an input dataset, used in cc_outl for spatial thinning, 
# based on a point dataset and a raster resolution

ras_create <- function(x, lat, lon,  thinning_res){
  # get data extend
  ex <- raster::extent(sp::SpatialPoints(x[, c(lon, lat)])) + thinning_res * 2
  
  # create raster
  ras <- raster::raster(x = ex, resolution = thinning_res)
  
  # set cell ids
  vals <- seq_len(raster::ncell(ras))
  ras <- raster::setValues(ras, vals)
  
  return(ras)
}


# A function to get the distance between raster midpoints and 
#output a data.frame with the distances and the cell IDs as row and column names for cc_outl

ras_dist <-  function(x, lat, lon, ras, weights){
  # x = a data.frame of point coordinates, ras = a raster with cell IDs as layer,
  #weight = logical, shall the distance matrix be weightened by the number of points per cell?
  # assign each point to a raster cell
  pts <- raster::extract(x = ras, y = sp::SpatialPoints(x[, c(lon, lat)]))
  
  # convert to data.frame
  midp <- data.frame(raster::rasterToPoints(ras))
  
  # retain only cells that contain points
  midp <- midp[midp$layer %in% unique(pts),]
  
  # order
  midp <- midp[match(unique(pts), midp$layer),]
  
  # calculate geospheric distance between raster cells with points
  dist <- geosphere::distm(midp[, c("x", "y")], 
                           fun = geosphere::distHaversine) / 1000
  
  # set rownames and colnames to cell IDs
  dist <- as.data.frame(dist, row.names = as.integer(midp$layer))
  names(dist) <- midp$layer
  
  if(weights){
    # approximate within cell distance as half 
    # the cell size, assumin 1 deg = 100km
    # this is crude, but doesn't really matter
    dist[dist == 0] <- 100 * mean(raster::res(ras)) / 2
    
    # weight matrix to account for the number of points per cell
    ## the number of points in each cell
    cou <- table(pts)
    
    ## order
    cou <- cou[match(unique(pts), names(cou))]
    
    # weight matrix, representing the number of distances between or within the cellse (points cell 1 * points cell 2)
    wm <- outer(cou, cou)
    
    # multiply matrix elements to get weightend sum
    dist <- round(dist * wm, 0)
    
    dist <- list(pts = pts, dist = dist, wm = wm)
  }else{
    # set diagonale to NA, so it does not influence the mean
    dist[dist == 0] <- NA
    
    dist <- list(pts = pts, dist = dist)
  }
  
  return(dist)
}
azizka/CoordinateCleaner documentation built on Dec. 7, 2019, 10:23 p.m.