Description Usage Arguments Value Examples
Function diffusion.input
computes the diffusion input
score to perform diffusion in graphs.
It uses the functions diffusion.input.Binary
and
diffusion.input.probability
Function diffusion.input.Binary
computes the binary
diffusion input score.
Function diffusion.input.probability
computes the
probability diffusion input score.
Function finalResults
prepares the final table ranked by
the diffusion scores computed.
Function modifiedTabs
prepares the tables that result from
the matching stage and the
filtering stage to evaluate their performance.
Function set.diffusion
diffuses heat in a specific
Kernel given a matrix of compounds and its
diffusion input score.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | diffusion.input(
df,
input.type = "probability",
background = NULL,
Unique.Annotation = FALSE,
do.Par = TRUE,
nClust = 2
)
diffusion.input.Binary(df, do.Par = TRUE, nClust = 2)
diffusion.input.probability(df, do.Par = TRUE, nClust = 2)
finalResults(Diff.Tab, score, do.Par = TRUE, nClust)
modifiedTabs(df, do.Par = TRUE, nClust)
set.diffusion(
df,
graph = NULL,
graph.name = "fella",
K = NULL,
scores = c("raw", "ber_s", "z"),
do.Par = TRUE,
nClust = 2
)
|
df |
Object returned by the |
input.type |
Diffusion input type per compound. "binary" 1 if the compound is proposed. "probability" computes the probability of existence of each compound. |
background |
Vector containing a list of KEGG identifiers which will be set to 0 in the diffusion process. This will have an effect in the normalization process performed when using the z score. If NULL, the background will be set to all the compounds available in df. |
Unique.Annotation |
Logical (only available when input type="binary"). If TRUE, the binary diffusion input is computed by only considering those peaks with a unique annotation (Def: FALSE). |
do.Par |
TRUE if parallel computing is required. Def: TRUE |
nClust |
Number of clusters that may be used. Def: Number of clusters - 1. |
Diff.Tab |
Data frame that results from the diffusion step. |
score |
Method of diffusion. Possible values are: "raw", "ber_s" and "z" |
graph |
Diffusion graph where nodes correspond to KEGG compounds.
If NULL, the diffusion graph indicated in |
graph.name |
Name of the diffusion graphs available in mWISE. The options are "fella", "RClass3levels" or "RClass2levels" (Def: "fella"). |
K |
Regularised Laplacian kernel. If NULL, it will be computed
using the |
scores |
Method of diffusion. Def: c("raw", "ber_s", "z") |
Function diffusion.input
returns a list containing the
diffusion input data frame and a character
specifying the diffusion input type.
Function diffusion.input.Binary
returns a data
frame containing the
binary diffusion input.
Function diffusion.input.probability
returns a data
frame containing the probability diffusion input.
Function finalResults
returns a table containing the final
potential candidates ranked by diffusion score.
Function modifiedTabs
returns a table containing the potential
candidates in a specific mWISE stage without repeated peaks.
Function set.diffusion
returns a list containing
the diffusion results, the compounds discarded during
the diffusion process, the compounds present in the network
and the background used.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | data("sample.keggDB")
Cpd.Add <- CpdaddPreparation(KeggDB = sample.keggDB, do.Par = FALSE)
data(sample.dataset)
Peak.List <- sample.dataset$Positive$Input
Annotated.List <- matchingStage(Peak.List = Peak.List, Cpd.Add = Cpd.Add,
polarity = "positive", do.Par = FALSE)
Intensity.idx <- seq(27,38)
clustered <- featuresClustering(Peak.List = Peak.List,
Intensity.idx = Intensity.idx,
do.Par = FALSE)
Annotated.Tab <- Annotated.List$Peak.Cpd
Annotated.Tab <- merge(Annotated.Tab,
clustered$Peak.List[,c("Peak.Id", "pcgroup")],
by = "Peak.Id")
MH.Tab <- clusterBased.filter(df = Annotated.Tab,
polarity = "positive")
Input.diffusion <- diffusion.input(df = MH.Tab,
input.type = "probability",
Unique.Annotation = FALSE,
do.Par = FALSE)
data("sample.keggDB")
Cpd.Add <- CpdaddPreparation(KeggDB = sample.keggDB, do.Par = FALSE)
data(sample.dataset)
Peak.List <- sample.dataset$Positive$Input
Annotated.List <- matchingStage(Peak.List = Peak.List, Cpd.Add = Cpd.Add,
polarity = "positive", do.Par = FALSE)
Intensity.idx <- seq(27,38)
clustered <- featuresClustering(Peak.List = Peak.List,
Intensity.idx = Intensity.idx,
do.Par = FALSE)
Annotated.Tab <- Annotated.List$Peak.Cpd
Annotated.Tab <- merge(Annotated.Tab,
clustered$Peak.List[,c("Peak.Id", "pcgroup")],
by = "Peak.Id")
MH.Tab <- clusterBased.filter(df = Annotated.Tab,
polarity = "positive")
Input.diffusion <- diffusion.input(df = MH.Tab,
input.type = "probability",
Unique.Annotation = FALSE,
do.Par = FALSE)
data("sample.graph")
gMetab <- igraph::as.undirected(sample.graph)
diff.Cpd <- set.diffusion(df = Input.diffusion,
scores = "z",
graph = gMetab,
do.Par = FALSE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.